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École Doctorale : MIPTIS

LABORATOIRE D’INFORMATIQUE (EA 6300)
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découvrir les fabuleux plaisirs de la recherche sous ses apparences les plus diverses. Je
n’oublierai jamais son soutien et sa disponibilité dans les moments de doute. Je lui suis
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de thèse. Mes remerciements vont au Professeur Jacques CARLIER pour avoir accepté
d’être présent dans mon jury de thèse et pour sa participation scientifique ainsi que le
temps qu’il a consacré à ma recherche.
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Résumé

Nous considèrons dans cette thèse un problème d’ordonnancement de flow shop de per-
mutation où un ensemble de travaux doit être ordonnancé sur un ensemble de machines.
Les travaux doivent être ordonnancés sur les machines dans le même ordre. L’objectif est
de minimiser le retard total. Ce problème se note habituellement Fm|prmu|

∑
Tj et il est

connu pour être NP-difficile au sens ordinaire pour m = 1 et au sens fort pour m ≥ 2
[Lenstra et al., 1977], [Du and Leung, 1990].

Nous proposons des algorithmes heuristiques classiques et des matheuristiques pour
ce problème. Les matheuristiques sont un nouveau type d’algorithmes approchés qui ont
été proposés pour résoudre des problèmes d’optimisation combinatoire. Les méthodes
importent de la résolution exacte au sein des approches (méta) heuristiques. Ce type de
méthode de résolution a reçu un grand intérêt en raison de leurs très bonnes performances
pour résoudre des problèmes difficiles. Nous présentons d’abord les concepts de base d’un
problème d’ordonnancement. Nous donnons aussi une brève introduction à la théorie de
l’ordonnancement et nous présentons un panel de méthodes de résolution.

Deuxièmement, nous présentons un état de l’art des méthodes de résolution appliqueés
à notre problème.

Troisièmement, nous proposons et décrivons une formulation de programmation linéaire
du problème et un algorithme de branch-and-bound. Des conditions de dominance sont
utilisées pour couper des noeuds. Nous évaluons ces méthodes avec des jeux de données
aléatoires pour des instances de taille petite et moyenne avec deux machines. Nous
développons aussi une nouvel borne basée sur une relaxation partielle de l’intégrité des
variables du MILP. Cette borne inférieure a de bonnes performances pour de petits in-
stances, mais elle n’est pas efficace pour de grandes instences compte tenu de la taille du
MILP et du nombre de variables.

Et puis, de nombreux algorithmes (NEH, EDD, Recherche en faisceau, Récupération
recherche en faisceau, un algorithme génétique et algorithme Tabou ) sont proposés pour
résoudre le problème. De nombreux opérateurs de voisinage sont appliqués pour ces
méthodes. Ces algorithmes sont évalués pour tester leurs performances avec 108 instances
de litérature allant jusqu’à 350 travaux et 50 machines.

Ensuite, nous proposons de nouveaux algorithmes matheuristiques dans le Chapitre
5. Les matheuristics sont basées sur l’insertion de solution partielles exactes dans des
algorithmes de voisinage. Plusieurs versions de ces algorithmes sont proposées. Dans ces
méthodes, un solveur de MILP est appelé de façon itérative.

Enfin, nous considérons un problème où un flow shop de permutation à m-machine et
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RÉSUMÉ

un problème de vehicle routing sont intégrés, avec objectif la minimisation de la somme
des retards. Nous proposons un codage direct d’une solution et une méthode de voisinage.
Les résultats montrent que l’algorithme Tabou améliore grandement la solution initiale
donnée par EDD et où chaque voyage ne délivre qu’un travail.

Mots clés : Matheuristique, Ordonnancement, flow shop, retard total, algorithme
tabou, algorithme génétique, récupération recherche en faisceau, recherche en faisceau,
vehicle routing
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Abstract

We consider in this thesis a permutation flow shop scheduling problem where a set of jobs
have to be scheduled on a set of machines. The jobs have to be processed on the machines in
the same order. The objective is to minimize the total tardiness. This problem, classically
denoted by Fm|prmu|

∑
Tj , is known to be NP-hard in the ordinary sense for m = 1 and

in the strong sense for m ≥ 2 [Lenstra et al., 1977], [Du and Leung, 1990].

We propose classical heuristic algorithms and matheuristic algorithms for this problem.
The matheuristic methods are a new type of approximated algorithms that have been
proposed for solving combinatorial optimization problems. These methods embed exact
resolution into (meta)heuristic approaches. This type of resolution method has received a
great interest because of their very good performances for solving some difficult problems.
First, we present the basic concepts and components of a scheduling problem and the
aspects related to these components. We also give a brief introduction to the theory of
scheduling and present an overview of resolution methods.

Second, we provide the description of the state-of-the-art methods for the problem.

Third, we propose and describe mixed integer linear programming formulations and
branch-and-bound algorithms for solving the problem. The dominance conditions are
used to prune nodes. We evaluate the methods with a data set small to medium random
instances for two machines. We also develop a new hybrid lower bound algorithm based
on a partial relaxation of the integrity of variables of the MILP model. This lower bound
has good performances for small instances, but is not usable for large instances, due to
the size of the MILP and to the number of binary variables introduced.

And then, many algorithms (NEH, EDD, Beam Search, Recovering Beam Search, Ge-
netic algorithm and Tabu Search algorithm) are proposed for solving the problem. Many
neighborhood operators are applied for the methods. We evaluate the algorithms in order
to test their performance with benchmark instances that are proposed, with 108 problems
of up to 350 jobs and 50 machines.

Then, we propose the new matheuristic algorithms for solving the problem in the
Chapter 5. The matheuristics are based on the insertion of exact partial solution into a
neighborhood search algorithm. Several versions of these algorithms are derived. In these
methods, the solver for the MILP model is called iteratively.

Finally, we consider a problem where a m-machine permutation flow shop scheduling
problem and a vehicle routing problem are integrated and the objective is to minimize the
total tardiness. We introduce a direct coding for a complete solution and a Tabu search
for finding a sequence and trips. The results show that the TS greatly improves the initial
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solution given by EDD heuristic where each trip serves only one job at a time.

Keywords : Matheuristic algorithm, scheduling, flow shop, total tardiness, tabu search,
genetic algorithm, recovering beam search, beam search, vehicle routing
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Introduction

“Scheduling is a decision-making process that is used on a regular basis in many man-
ufacturing and services industries. It deals with the allocation of resources to tasks over
given time periods and its goal is to optimize one or more objectives” [Pinedo, 2008].
Typically, the result of the allocation is specified in the schedule. For a given set of tasks
to schedule and a given set of resources, a schedule is feasible if it does not violate any
accompanying constraint. Sometimes, finding a single feasible schedule is sufficient. How-
ever, under many circumstances, the goal is to find the best possible schedule from among
all feasible schedules, to achieve certain objective(s), such as the minimization of the com-
pletion time of the last task. Another objective may be the minimization of the number of
tasks completed after their respective due dates or the minimization of the total tardiness,
etc.

In a scheduling process, the type and amount of each resource is supposed to be
known. Boundary of scheduling problem can be efficiently determined if the resources are
specified. In addition, each task is described by its resource requirement, its duration,
the earliest time at which it may start and the time at which it is due to complete.
Any technological constraint (precedence relations for instance) should also be described.
Information about resources and tasks define a scheduling problem and its resolution is
fairly a complex matter. Resources are usually machines (in a workshop) or computers
(in a computing environment) or staff, supposed to perform only one task at a time (also
called disjunctive resources). The tasks are called jobs which may be operations in a
production process, or executions of computer programs. Sometimes, jobs may consist of
several elementary tasks called operations. The environment of the scheduling problem is
called a “shop environment”, and more precisely a job shop, a flow shop or an open shop
environment, depending on the routing of the elementary tasks in the shop. When all
the jobs visit the machines of the shop in the same order, the shop is called a flow shop.
The scheduling problem associated to this environment is called a flow shop scheduling
problem. A simplified version of this problem exists when it is assumed that the sequence
of these jobs in each machine is the same. This type of flow shop is called a permutation
flow shop. This thesis deals with permutation flow shop scheduling problems.

This type of problem has been widely studied in the literature. The first paper on
flow shop scheduling is due to Johnson in 1954 [Johnson, 1954]. Since then, thousands of
papers have been published on this category of problems for proposing exact and approx-
imated resolution methods. Furthermore, since several years, a new type of approximated
algorithms has been proposed for solving combinatorial optimization problems. These al-
gorithms embed exact resolution into (meta)heuristic approaches. This type of resolution
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method has received a great interest because of their very good performances for solving
some difficult problems [Maniezzo et al., 2010], [Talbi, 2013]. These methods are called
matheuristics. An essential feature is the exploitation in some part of the algorithms
of features derived from the resolution of the mathematical model of the problem under
study. In this thesis, we propose classical heuristic algorithms and matheuristic algorithms
for minimizing the total tardiness in a permutation flowshop.

The outline of the thesis is the following. In Chapter 1, we introduce the basic concepts
and components of a scheduling problem and the aspects related to these components, a
brief introduction to the theory of scheduling and resolution methods. In Chapter 2, the
description of the state-of-the-art methods for the problem is provided. We propose and
describe mixed integer linear programming formulations and branch-and-bound algorithms
for the problem in Chapter 3. The dominance conditions are presented in this chapter and
a new hybrid lower bound algorithm for improvement lower bound. The new lower bound
is based on a partial relaxation of the integrity of variables of the MILP model. Many
heuristic and metaheuristic algorithms are proposed for solving the problem in Chapter 4.
Many neighborhood operators are applied in the methods. New matheuristic algorithms
are developed for solving the problem in Chapter 5. Several versions of these algorithms
have been also derived, depending on how the initial sequence is obtained. In Chapter
6, we have considered a problem where a m-machine permutation flow shop scheduling
problem and a vehicle routing problem are integrated to minimize the total tardiness. We
have presented a direct coding for a complete solution and a neighborhood method for
finding a sequence and trips. We propose a Tabu search algorithm for this problem.
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Chapter 1

Problem Formulation

This chapter is the introduction to the basic concepts and components of a schedul-
ing problem (tasks, resources and objective functions) and the aspects related to these
components. The chapter is composed of three sections. The first section gives a brief
introduction to the theory of scheduling. The second section presents an overview of res-
olution methods, some of them being used in the rest of the thesis. The third section
presents the outline of the thesis.

1.1 Brief introduction to the theory of scheduling

We present in this section definitions, criteria and complexity of some scheduling prob-
lems.

1.1.1 Definitions

There are many definitions of a scheduling problem in several books in the literature.
We can find the following definitions: “Scheduling is a decision-making process that is
used on a regular basis in many manufacturing and services industries. It deals with the
allocation of resources to tasks over given time periods and its goal is to optimize one
or more objectives”[Pinedo, 2008]. Pinedo also showed the importance of the sequencing
and scheduling problems: “scheduling,..., plays an important role in most manufacturing
and production systems as well as in most information processing environments. It is
also important in transportation and distribution settings and in other types of service
industries.”

Another definition has been put forward by researchers. Scheduling is defined by Leung
as follows: “Scheduling is concerned with the allocation of scarce resources to activities
with the objective of optimizing one or more performance measure.” [Leung, 2004]

Morton et al. also defined scheduling as follows: “. . . scheduling is the process of orga-
nizing, choosing, and timing resource usage to carry out all the activities necessary to pro-
duce the desired outputs at the desired times, while satisfying a large number of time and
relationship constraints among the activities and the resources.” [Morton and Pentico, 1993]
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1.1. BRIEF INTRODUCTION TO THE THEORY OF SCHEDULING

From the above definitions, we can say that scheduling is a decision-making process
that is concerned with the allocation of limited resources or machines over time to carry
out a collection of jobs or tasks in which one or several objectives have to be optimized,
and satisfying a set of constraints.

Notation of scheduling problems

A scheduling problem is characterized by three elements: a machine environment, a
set of constraints and an objective function. These elements are those of the classical
three-field notation of [Graham et al., 1979], also called “α|β|γ” notation. The field α
describes the machine environment. This field is decomposed into two sub-fields α1 and
α2 where α1 denotes the machine organization and α2 the number of machines. The
machine organization can be:

• a single machine, in this case α1 is empty and α2 =′ 1′,

• parallel machines, in this case α1 ∈ {P,Q,R} to denote respectively identical, uni-
form or unrelated parallel machines and α2 is generally equal to 2 if there are two
machines, or to m if the number of machines is fixed, or α2 is empty if the number
of machines is unknown,

• a shop organization, in this case α1 ∈ {F, J,O} where

– F denotes a flow shop organization where all the jobs have the same routing,
i.e. they visit the machines in the same order,

– J denotes a job shop organization where each job has its own routing in the
shop,

– and O denoted an open shop organization where the routing of the jobs in the
shop has to be decided.

The field β describes the constraints of the problem. In this field, it is possible to indicate
that jobs have a release date, i.e. a date before which they cannot be started, that jobs are
subject to precedence relations, that the sequence of jobs on the machines are all the same
(for a flow shop environment, denoted by “perm”), etc. The field γ gives the notation of
the objective function that is considered (see Section 1.1.2).

In the following, we treat a permutation flow shop problem withmmachines and the ob-
jective is to minimize the total tardiness. The notation of this problem is Fm|perm|

∑
Tj ,

where
∑
Tj is the notation for the total tardiness.

Notations in this thesis

• N = {J1, . . . , Jn} is the set of n jobs that have to be processed on a set M =
{M1, . . . ,Mm} of m machines.

• pi,j ≥ 0 denotes the fixed processing time of job Jj , Jj ∈ N , on machine Mi, Mi ∈M .

• dj , Jj ∈ N is the due date for the job Jj .
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1.1. BRIEF INTRODUCTION TO THE THEORY OF SCHEDULING

• Cj is the completion time of job Jj , i.e. the completion time of Jj on the last machine
of the shop.

• Tj = max(0, Cj − dj) is the tardiness of job Jj .

1.1.2 Criteria

In the sequencing and scheduling literature, according to [Kan, 1976] and [French, 1982],
the criteria for scheduling problems are classified as follows: completion times oriented,
due dates oriented, or inventory and machine utilization oriented. There are other criteria
obtained by a combination of two or more other criteria.

Another classification of criteria is possible by considering “minimax” critera, which
represent the maximum value of a set of functions to be minimized, and “minisum” criteria,
which represent a sum of functions to be minimized. A summary of the criteria is presented
below.

1.1.2.1 The “minimax” criteria

The criteria only based on the completion times:

• Cmax = maxj=1,...,nCj , is the maximum completion time of jobs. Cmax is also called
the “makespan”.

• Fmax = maxj=1,...,n Fj with Fj = Cj − rj is the maximum time spent in the shop, or
even yet, the duration of resting. rj denotes the release date of the job Jj (supposed
to correspond to the arrival time of the job in the shop).

The criteria based on the due dates of jobs are:

• Lmax = maxj=1,...,n Lj , the maximum lateness, with Lj = Cj − dj .

• Tmax = maxj=1,...,n Tj , the maximum tardiness (Tj already defined).

• Emax = maxj=1,...,nEj , the maximum earliness, with Ej = max(0, dj − Cj).

1.1.2.2 The “minisum” criteria

“Minisum” criteria are usually more difficult to optimize than “minimax” criteria.
These criteria are the following.

•
∑
Cj denotes

n∑
j=1

Cj which is the total completion time of jobs.

•
∑
Tj denotes

n∑
j=1

Tj which is the total tardiness of jobs.
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•
∑
Uj denotes

n∑
j=1

Uj which is the number of late jobs with Uj = 0 if Cj ≤ dj , and

Uj = 1 otherwise.

1.1.3 Complexity of some scheduling problems

“Complexity theory provides a mathematical framework in which computational prob-
lems are studied so that they can be classified as “easy” or “hard” [Brucker, 2007]. This
classification is useful to see if an efficient algorithm may exist, especially in terms of
computation time, for solving a particular problem. A problem belongs to a class of com-
plexity, which informs us of the complexity of the “best algorithm” which is able to solve
it. Hence, if a given problem is shown to belong to the class of “easy” problems, it means
that it is possible to exhibit a polynomial time algorithm to solve it. Usually this is good
news but unfortunately, this does not often happen for complex problems. Accordingly, if
a problem belongs to the class of hard problems, it cannot be solved in polynomial time,
i.e. the required CPU time to solve it becomes “exponential” [T’kindt and Billaut, 2006].

We refer to [Garey and Johnson, 1979] and to [Papadimitriou, 1994] for the definition
of complexity classes and more details on computational complexity.

We give now the complexity of some flowshop scheduling problems. More problems
can be found at www.mathematik.uni-osnabrueck.de/research/OR/class.

• F2||Cmax is the well known two-machine flow shop problem which is polynomially
solvable [Johnson, 1954] by the famous Johnson’s algorithm,

• F3||Cmax is NP-complete in the strong sense [Garey et al., 1976],

• F2||
∑
Cj is NP-complete in the strong sense [Garey et al., 1976],

• F2||
∑
Tj is NP-complete in the ordinary sense [Lenstra et al., 1977],

• 1||
∑
Tj [Du and Leung, 1990] showed that the problem is NP-hard and can be

solved in pseudo-polynomial time (NP-complete in the ordinary sense or weakly
NP-complete).

The problem that we consider in this thesis, the Fm|perm|
∑
Tj problem, is thus NP-

complete in the strong sense. Notice also that if there is only one machine, the problem
remains NP-complete, and that if the due dates are equal to zero, the problem remains
NP-complete (equivalent to Fm||

∑
Cj problem). The basic simplifications of this problem

are NP-complete problems, which makes this problem one of the more difficult flow shop
scheduling problems.

1.2 Resolution methods

In this section, we describe several resolution methods for scheduling problems in-
cluding exact and heuristics techniques. Many approaches have been proposed to obtain
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optimal or near-optimal solutions. Each method has its own performances, measured by
the mean quality of the solutions and by its computation time.

The most used exact methods are dedicated branch-and-bound algorithms, dynamic
programming algorithms and solvers based on mixed integer linear programming formu-
lations (MILP or MIP). These exact methods return optimal solutions but they can be
computationally intensive, even for very small problem instances.

Approximation algorithms and heuristic algorithms are able to solve large problem
instances and are able to produce “good” solutions within a reasonable amount of time.
These methods can be combined in many ways with one another, forming hybrid tech-
niques.

1.2.1 Exact methods

One of the exact techniques to obtain an optimal solution is the straightforward enu-
meration, where every possible solution is explored in order to find the optimal solution.
However, due to the computational complexity, it is not practical even for problems of
moderate sizes. We have therefore to search for more sophisticated resolution methods.

Branch-and-bound

Branch-and-Bound (B&B) is an algorithm for solving hard combinatorial optimization
problems. The method was first proposed by [Land and Doig, 1960] for discrete program-
ming and [Ignall and Schrage, 1965] used to find an optimal schedule for the Fm||Cmax

flow shop problem. The process of solving a problem using B&B algorithm can be de-
scribed by a search tree. Each node of the search tree corresponds to a subset of feasible
solutions to a problem. We assume in the following that the B&B algorithm is to find for a
minimum value of a function f(x), where x ranges over some set S of candidate solutions.
A B&B algorithm has the following characteristics:

• A branching rule that defines partitions of a set of feasible solutions into subsets.
From a set S of feasible solutions, the branching returns two or more smaller sets
S1, S2, ..., whose union covers S. The minimum of f(x) over S is the minimum of
v1, v2,... where each vi is the minimum of f(x) within Si. The recursive application
of the branching leads to a tree structure (also called the search tree) whose nodes
are the subsets of S.

• A lower bounding rule that provides a lower bound, LB(S), on the value of the
feasible solutions for any S. A good lower bound (with the highest possible value)
may lead to the elimination of an important number of nodes of the search tree, but
if its computational requirements are excessively large, it may become advantageous
to use a weaker but more quickly computable lower bound.

• A search strategy, which selects the next node to explore. There are three basic
search strategies: depth-first (the list of nodes is managed as a LIFO list), breadth-
first (the list of nodes is managed as a FIFO list) and best-first (nodes are sorted
according to a sorting rule, generally the lower bound value is used).
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• An upper bounding method, UB, of the objective value. The objective value of any
feasible solution will provide such an upper bound. If the lower bound LB(Si) of a
subproblem Si is greater than of equal to UB, i.e. LB(Si) ≥ UB, then this subprob-
lem cannot yield a better solution and there is no need to continue the branching
from this node. We say that we cut this node. To stop the branching process in
many nodes, the upper bound UB has to be as small as possible. Therefore, at the
beginning of the branch-and-bound some heuristic algorithm may be applied to find
a good feasible solution with a small value of the objective function. When the con-
sidered node is a leaf of the tree, it corresponds to a feasible solution. If the value of
this solution is better than UB then UB is updated and this solution is memorized.

The algorithm stops when the list of nodes to explore is empty.

Example: application of the B&B algorithm to the F2||
∑
Cj problem

We consider four jobs and two machines. The data are indicated in the following table.

j 1 2 3 4

p1,j 4 2 1 3
p2,j 2 5 5 3

The branching is the following. A node S represents a partial beginning sequence and
the children nodes of S correspond to the sequence of S completed by an additional node.
The bounding rules are the following:

• The initial UB is given by applying Johnson’s rule and we obtain
∑
Cj = 47 and

the schedule is {J3, J2, J4, J1}.

• At each node, LB is calculated by completing the partial sequence with SPT rule
on the second machine. The values of the lower bound are indicated at each node of
the tree in Fig. 1.1.

• Finally, we found the optimal solution is {J3, J1, J4, J2} and the value equals to 41.

The exploration strategy is depth-first.

For example, in the first node created in the search tree, job J1 is scheduled in first
position, therefore we note S = {J1}. The total completion time of S is equal to

∑
Cj(S) =

6. For computing the lower bound, one consider jobs J2 to J4 in SPT order on the second
machine, i.e. in the order (J4, J2, J3). The corresponding completion times are equal
respectively to (9, 14, 19). Then, the lower bound associated to S = {J1} is equal to
LB(S) = 6 + 9 + 14 + 19 = 48. Because the upper bound is equal to 47, there is no chance
that this node S can lead to a better solution and therefore, this node is pruned.

Dynamic Programming

Dynamic Programming (DP) was first proposed by Richard Bellman [Bellman, 1957].
It is a complete enumeration method. The main idea of DP is to decompose recursively
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Figure 1.1: Search tree of B&B algorithm

the problem into a series of subproblems, in order to minimize the amount of computation
to be done. The approach solves each subproblem and determines its contribution to the
objective function. At each iteration, it determines the optimal solution for a subproblem.
The solution for the original problem can be deduced from the solution of each subproblem.

A DP formulation is characterized by three types of expressions:

• some initial conditions,

• a recursive relation

• and a goal (i.e. an optimal value function).

Example: application of the DP algorithm to the F2||
∑
Cj problem

The resolution of the F2||
∑
Cj problem by a DP algorithm is originally proposed in

[T’kindt et al., 2003]. We give here a short presentation of this formulation.

Each step of the DP algorithm corresponds to the number of scheduled jobs. At a
given step i, we denote by ei the set of unscheduled jobs and the decision corresponds to
the job Jj in ei that is put in first position in the sequence. We denote by t1 and t2 the
times at which machine M1 and machine M2 become available after processing the jobs
preceding ei and we define t = t2 − t1. The completion time of Jj is the equal to

Cj(t1, t2) = max(t1 + p1,j , t2) + p2,j = max(p1,j , t2 − t1) + p2,j + t1

Since for a given set of jobs ei, t1 is a constant for all jobs, it does not affect the
selection of job Jj . Therefore, we assume that the start time of the first job at machine
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Figure 1.2: DP situation at stage i, state ei and for decision Ji

M1 is 0 and we only consider one parameter t in the following. Then, the temporary
completion time of Jj is given by:

Cj(t) = max(p1,j , t) + p2,j

We denote by fi(ei, t) the minimum total completion time of the jobs of ei if machine
M2 is busy during t time units before the first job of the sequence (i.e. Jj) can start. By
selecting job Jj that minimizes the total completion time, we obtain the following recursive
relation:

fi(ei, t) = min
Jj∈ei

[
Cj(t) + p1,j(|ei| − 1) + fi−1

(
ei − {Jj}, Cj(t)− p1,j

)]
∀i, 1 ≤ i ≤ n, ∀t, 0 ≤ t ≤ UB

⇔ fi(ei, t) = min
Jj∈ei

[
fi−1(ei − {Jj}, t′) + t′ + ip1,j

]
∀i, 1 ≤ i ≤ n, ∀t, 0 ≤ t ≤ UB

with t′ = Cj(t)− p1,j

where

f0(∅, t) = 0, ∀t, 0 ≤ t ≤ UB

and UB is an upper bound for the makespan criterion.

Let consider the same instance as before. We have the first phase (see Table A.1) with
one job. The tables to be done for e1 = {J1}, e1 = {J2}, e1 = {J3}, e1 = {J4}.

Then the second phase where two jobs are scheduled with e2 = {J1, J3} is the Table
1.2.

The third phase with e3 = {J1, J3, J4}, this table has to be completed with Jj = J1,
Jj = J3 and Jj = J4 is the Table 1.3.

At the end, we have the fourth phase with e4 = {J1, J2, J3, J4} and and only one
possible value for t = 0. This table has to be completed with Jj = J2 is the Table A.8.

We deduce from this table that the value of the optimal solution is equal to 41. By
applying a backtrack algorithm, we found the the optimal solution is {J3, J1, J4, J2}.

The detail of all the phases is given in Appendix A.
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Table 1.1: The first phase of example with one job

e1 {J1} {J2} {J3} {J4}
Jj J1 J2 J3 J4
ip1,j 4 2 1 3

t Cj(t) t′ F1 Cj(t) t′ F1 Cj(t) t′ F1 Cj(t) t′ F1

0 6 2 6 7 5 7 6 5 6 6 3 6
1 6 2 6 7 5 7 6 5 6 6 3 6
2 6 2 6 7 5 7 7 6 7 6 3 6
3 6 2 6 8 6 8 8 7 8 6 3 6
4 6 2 6 9 7 9 9 8 9 7 4 7
5 7 3 7 10 8 10 10 9 10 8 5 8
6 8 4 8 11 9 11 11 10 11 9 6 9
7 9 5 9 12 10 12 12 11 12 10 7 10
8 10 6 10 13 11 13 13 12 13 11 8 11
9 11 7 11 14 12 14 14 13 14 12 9 12
...

...
...

...
...

...
...

...
...

...
...

...
...

Table 1.2: The second phase of example with two jobs that are scheduled

e2 {J1, J3}
Jj J1 J3
ip1,j 8 2

t Cj(t) t′ F1 F2 Cj(t) t′ F1 F2

0 6 2 7 17 6 5 7 14∗

1 6 2 7 17 6 5 7 14∗

2 6 2 7 17 7 6 8 16∗

3 6 2 7 17∗ 8 7 9 18
4 2 2 7 17∗ 9 8 10 20
5 7 3 8 19∗ 10 9 11 22
6 8 4 9 21∗ 11 10 12 24
7 9 5 10 23∗ 12 11 13 26
8 10 6 11 25∗ 13 12 14 28
9 11 7 12 27 14 13 15 30
...

...
...

...
...

...
...

...
...

Mixed Integer Linear Programming

Mixed Integer Linear Programming (MILP or MIP) is a phase of modelization of
a problem under the following form [Bixby et al., 2000] and then the resolution of this
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Table 1.3: The third phase of example with three jobs that are scheduled

e3 {J1, J3, J4}
Jj J1 J3 J4
ip1,j 12 3 9

t Cj(t) t′ F2 F3 Cj(t) t′ F2 F3 Cj(t) t′ F2 F3

0 6 2 17 31 6 5 17 25∗ 6 3 17 29
1 6 2 17 31 6 5 17 25∗ 6 3 17 29
2 6 2 17 31 7 6 19 28∗ 6 3 17 29
3 6 2 17 31 8 7 21 31 6 3 17 29∗

4 6 2 17 31 9 8 23 34 7 4 17 30∗

5 7 3 17 32∗ 10 9 25 37 8 5 19 33
6 8 4 19 34∗ 11 10 27 40 9 6 21 36
7 9 5 21 37∗ 12 11 29 43 10 7 23 39
8 10 6 23 40∗ 13 12 31 46 11 8 25 42
9 11 7 25 43∗ 14 13 33 49 12 9 27 45
...

...
...

...
...

...
...

...
...

...
...

...
...

Table 1.4: The final phase of example with four jobs that are scheduled

e4 {J1, J2, J3, J4}
Jj J1 J2 J3 J4
ip1,j 16 8 4 12

t Cj(t) t′ F3 F4 Cj(t) t′ F3 F4 Cj(t) t′ F3 F4 Cj(t) t′ F3 F4

0 6 2 25 43 7 5 32 45 6 5 32 41∗ 6 33 33 48

problem by using a solver:

Minimize cTx

subject to Ax ≥ b
l ≤ x ≤ u
some or all xj integral

where A is an m×n matrix, call the constraint matrix, x is a vector of n variables, c is the
vector of coefficients of the objective function, and l and u are vectors of bounds. Thus, an
MILP is a linear program (LP) plus an integrality restriction on some or all of the variables.

Example: application to the F2||
∑
Cj problem

The following example is an MILP model for the F2||
∑
Cj [Della Croce et al., 2011]

problem. This model is based on positional variables . We define the binary variables xj,k,

32



1.2. RESOLUTION METHODS

equal to 1 if job Jj is in position k, 0 otherwise; Ck,1 and Ck,2, denote the completion
times of the job in position k on M1 and M2, and Ck ≥ 0 the completion time of the job
in position k. The MILP is the following.

Minimize
n∑
k=1

Ck,2 (1.1)

subject to
n∑
k=1

xj,k = 1, ∀j ∈ {1, ..., n} (1.2)

n∑
j=1

xj,k = 1, ∀k ∈ {1, ..., n} (1.3)

C1,1 =

n∑
j=1

p1,jxj,1 (1.4)

C1,2 = C1,1 +
n∑
j=1

p2,jxj,1 (1.5)

Ck,1 = Ck−1,1 +
n∑
j=1

p1,jxj,k, ∀k ∈ {2, ..., n} (1.6)

Ck,2 ≥ Ck,1 +
n∑
j=1

p2,jxj,k, ∀k ∈ {2, ..., n} (1.7)

Ck,2 ≥ Ck−1,2 +

n∑
j=1

p2,jxj,k, ∀k ∈ {2, ..., n} (1.8)

variables Ck,1 ≥ 0, Ck,2 ≥ 0, ∀k ∈ {1, ..., n} (1.9)

xj,k ∈ {0, 1}, ∀j ∈ {1, ..., n}, k ∈ {1, ..., n} (1.10)

Constraints (1.2) and (1.3) ensure that there is one job per position and one position per
job. Constraints (1.4) and (1.6) compute the completion times on machineM1. Constraints
(1.5), (1.7) and (1.8) determine the completion times on machine M2. This model has n2

binary variables and 2n continuous variables, and 5n− 1 constraints.

1.2.2 Heuristic and metaheuristic methods

Heuristics

Heuristic methods are algorithms which are used to find solutions among all possible
ones, but these algorithms do not guarantee that the best solution will be found. Therefore,
they are considered as approximated algorithms. They usually find quickly and easily a
solution close to the optimal one. On some instances, these algorithms may return optimal
solutions.

An example is the NEH heuristic algorithm [Nawaz et al., 1983] for the Fm||Cmax prob-
lem. The idea of the NEH algorithm is the following: the jobs are sorted in non-increasing
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order of the sum of the processing times on machines, then a solution is obtained in a con-
structive way, adding at each step a new job in that order, inserting it at the best place, i.e.
the one that results in the best partial solution. NEH algorithm is now described in details.

Algorithm 1 NEH algorithm

1: Calculate total Pj for each job, where Pj =
m∑
i=1

pi,j , ∀j = 1 . . . , n

2: Sort the jobs in non-increasing order of Pj
3: Select the first two jobs and choose the sequence S of these two jobs with minimum
Cmax value.

4: for k = 3 to n do
5: Test the insertion of the next job at any possible position in S from position 1 to

position k + 1
6: Keep the insertion with minimum Cmax value.
7: Update S
8: end for

Metaheuristics: Tabu search and Genetic algorithm

The formal definition of metaheuristics is based on a variety of definitions from different
authors, the following definition seems to be most appropriate: “A metaheuristic is an
iterative master process that guides and modifies the operations of subordinate heuristics
to efficiently produce high quality solutions. It may manipulate a complete (or incomplete)
single solution or a collection of solutions at each iteration. The subordinate heuristics
may be high (or low) level procedures, or a simple local search, or just a construction
method. The family of metaheuristics includes, but is not limited to, tabu search, ant
systems, greedy randomized adaptive search, variable neighborhood search, evolutionary
methods, genetic algorithms, simulated annealing, and their hybrids.” [Vop et al., 1999],
[Maniezzo et al., 2010]

Tabu search

Tabu Search (TS) has been initially proposed by Glover [Glover, 1989], [Glover, 1990].
TS is a metaheuristic local search algorithm that begins with an initial solution and suc-
cessively moves to the best solution in the neighborhood of the current solution. The
algorithm maintains a list of forbidden solutions, to prevent the algorithm from visiting
solutions already examined (these solutions are called tabu). The general TS algorithm is
described below.

Notations:

• S0 is an initial solution,

• S is the current solution,
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• f is the value of solution S,

• S∗ is the best solution,

• f∗ is the value of S∗,

• N(S) is the whole neighborhood of S,

• N ′(S) is the neighborhood of S which is not tabu,

• T is the tabu list.

Algorithm 2 Tabu Search algorithm

1: S = S0, f
∗ = f(S0), S

∗ = S0, T = ∅.
2: while Termination criterion not satisfied do
3: Select S in argmin[f(S′)], where S′ is a solution in N ′(S),
4: if f(S) < f∗ then
5: f∗ = f(S), S∗ = S,
6: end if
7: Record the current move in the tabu list T (delete oldest entry if necessary).
8: end while

Example:

The example deals with the resolution of the two-machine flowshop scheduling prob-
lem with minimization of the total tardiness (F2||

∑
Tj). We apply the technique for five

iterations, we fix the length of the Tabu list (T ) to 2. The data are given below.

j 1 2 3 4

p1,j 1 2 6 3
p2,j 5 4 2 3
dj 11 10 9 7

• Initialization

– Tabu list T = ∅ , S0 = {J4, J3, J2, J1} is an initial solution obtained by sorting
the jobs in EDD order.

– S = S0, f
∗ = f(S0) = 14, S∗ = S0,

– The neighborhood of S is defined by all the schedules that can be obtained with
adjacent pairwise interchanges.

• Iteration 1

– The three neighbors of S0 are shown in Fig. 1.3. The values of
∑
Tj are

indicated for each neighbor.
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– The current best neighbor is {J4, J2, J3, J1}
– Let S = {J4, J2, J3, J1} and f(S) = 11

– f(S) < f∗, set f∗ = 11, S∗ = {J4, J2, J3, J1}
– Move = (J3, J2), update tabu list T = {(J3, J2)}

S = {J4, J3, J2, J1}
∑
Tj = 14

S = {J4, J2, J3, J1}

∑
Tj = 11

S = {J3, J4, J2, J1}

∑
Tj = 21

S = {J4, J3, J1, J2}

∑
Tj = 17

move=(J3, J2)

Current best sequence

Figure 1.3: Iteration 1: Sequences of S by adjacent pairwise interchange

• Iteration 2

– The computations of
∑
Tj of the neighbor sequences are reported in Fig. 1.4.

– The current best sequence is {J4, J2, J1, J3}
– Let S = {J4, J2, J1, J3} and f(S) = 12

– f(S) > f∗, f∗ remains at value 11

– Move = (J3, J1) is added to the tabu list T = {(J3, J2), (J3, J1)}

S = {J4, J2, J3, J1}
∑
Tj = 11

S = {J4, J3, J2, J1}S = {J2, J4, J3, J1}

∑
Tj = 13

S = {J4, J2, J1, J3}

∑
Tj = 12

Move=(J3, J1)

Current best sequence

Figure 1.4: Iteration 2: Sequences of S by adjacent pairwise interchange

• Iteration 3

– The computations of
∑
Tj of the neighbor sequences are reported in Fig. 1.5.

– The current best sequence is {J2, J4, J1, J3}
– Let S = {J2, J4, J1, J3} and f(S) = 12

– f(S) > f∗, f∗ remains at value 11

– Move = (J4, J2). Since length of T is 2, we update tabu list, remove (J3, J2) from
the list and add (J4, J2) to the list. The new tabu list is T = {(J3, J1), (J4, J2)}
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S = {J4, J2, J1, J3}
∑
Tj = 12

S = {J4, J1, J2, J3}S = {J2, J4, J1, J3}

∑
Tj = 12

S = {J4, J2, J3, J1}

∑
Tj = 13

Move=(J4, J2)

Current best sequence

Figure 1.5: Iteration 3: Sequences of S by adjacent pairwise interchange

• Iteration 4

– The computations of
∑
Tj of the neighbor sequences are reported in Fig. 1.6.

– The current best sequence is {J2, J1, J4, J3}

– Let S = {J2, J1, J4, J3} and f(S) = 14

– f(S) > f∗, f∗ remains at value 11

– Remove (J3, J1) from list and add (J4, J1) to list. New tabu list T = {(J4, J2),
(J4, J1)}

S = {J2, J4, J1, J3}
∑
Tj = 12

S = {J2, J1, J4, J3}S = {J4, J2, J1, J3} S = {J2, J4, J3, J1}

∑
Tj = 14Move=(J4, J1)

Current best sequence

Figure 1.6: Iteration 4: Sequences of S by adjacent pairwise interchange

• Iteration 5

– The computations of
∑
Tj of the neighbor sequences are reported in Fig. 1.7.

– The current best sequence is {J1, J2, J4, J3}

– Let S = {J1, J2, J4, J3} and f(S) = 12

– f(S) > f∗, f∗ remains at value 11

– Remove (J4, J2) from list and add (J2, J1) to list. New tabu list T = {(J4, J1),
(J2, J1)}

At the end of iteration 5, the best overall sequence is {J4, J2, J3, J1} and its value is
equal to 11.
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S = {J2, J1, J4, J3}
∑
Tj = 14

S = {J2, J4, J1, J3}S = {J1, J2, J4, J3} S = {J2, J1, J3, J4}

∑
Tj = 13

Move=(J2, J1)

Current best sequence

∑
Tj = 12

Figure 1.7: Iteration 5: Sequences of S by adjacent pairwise interchange

Genetic algorithms

Genetic algorithms (GA) have been originally proposed by Holland [Holland, 1975].
This is a general search technique where a population composed by individuals evolves
following nature inspired mechanisms called “genetic operators”. The population is com-
posed by individuals that are evaluated by a fitness, which is often related to the objective
function.

Starting from an initial population, new solutions are generated by selecting some
“parents” randomly, but with a probability growing with fitness, and by applying genetic
operators such as selection, crossover and mutation, which introduce random modifica-
tions. Some existing solutions are randomly selected for crossover, some solutions are
selected for mutation, and a new population of the same size is obtained. The process is
repeated until a given stopping criterion is reached, e.g. a time limit or when a sufficiently
satisfactory solution has been found.

Genetic algorithms have been largely used for solving scheduling problems. According
to [Goldberg, 1989], the main steps of a genetic algorithm are:

1. Generation of the initial population P0,

2. Evaluation of the fitness of each individual,

3. Selection of the individual couples in population Pk−1,

4. Application of the crossover operator: with a probability pc, two individuals of Pk−1
will be replaced by two new individuals in Pk,

5. Application of the mutation operator: with a probability pm, each individual is
modified by a mutation,

6. Replace population Pk−1 by population Pk: Pk contains the PopSize best individuals
of Pk−1 ∪Mk ∪ Ck.

7. and repeat the process at step 2 until a stopping condition is satisfied.

Therefore, a genetic algorithm is designed by several parameters of high importance.
First of all, there are several ways for coding a solution. Coding is important because it is
used for the crossover operator and mutation operators. In scheduling, when solving the
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problem is equivalent to find a sequence, it is generally convenient to consider that an in-
dividual is exactly a sequence. This is called in the literature “direct encoding” because an
individual corresponds to a solution without ambiguity. For more complicated scheduling
problems such as job shop or parallel machine problems, an individual may represent a
list of jobs, but an algorithm has to be used to determine the corresponding solution. This
is called in the literature “undirect encoding” because an individual does not correspond
“immediately” to a solution. The other key points in a genetic algorithm are the crossover
and the mutation operators. The literature contains a lot of definitions, strongly related to
the coding definition. For classical scheduling problems, the most famous crossover opera-
tors are 1-point crossover up to k-point crossover. Mutation generally consists in changing
arbitrarily an element of an individual. Fixing the probabilities pc of crossover and pm of
mutation is not an easy task. It is generally done after some preliminary computational
experiments on a subset of the data set. A survey of the applications of genetic algorithms
to scheduling problems can be found in [Portmann and Vignier, 2008].

1.3 Outline of the thesis

To summarize, we consider in this thesis a permutation flow shop scheduling problem
where a set N = {J1, ..., Jn} of n jobs have to be scheduled on a set M = {M1, ...,Mm} of
m machines. Each job Jj has to be processed on machine Mi and then on machine Mi+1

(i = 1, ...,m − 1). The objective is to minimize the total tardiness denoted by
∑
Tj =∑n

j=1 Tj . This problem, classically denoted by Fm|prmu|
∑
Tj , is known to be NP-hard

in the ordinary sense for m = 1 and in the strong sense for m ≥ 2 [Lenstra et al., 1977],
[Du and Leung, 1990].

The thesis is organized as follows: In the Chapter 2, the description of the state-of-the-
art methods for solving the problem is provided. The exact methods and (meta)heuristic
approaches in the literature for the flow shop scheduling problem with the minimization
of the total tardiness are reviewed. We propose and describe mixed integer linear pro-
gramming formulations and branch-and-bound algorithms for the problem in Chapter 3.
Dominance conditions are used to prune nodes. We also develop a new hybrid lower bound
algorithm for improving the basic lower bounds. The new lower bound is based on a partial
relaxation of the integrity of variables of the MILP model. We evaluate the methods with
random data sets with small to medium instances for the case of two machines. Many
heuristic and metaheuristic algorithms are proposed for solving the problem in Chapter 4.
Many neighborhood operators are applied on these methods. The performance of these al-
gorithms is tested with benchmark instances. New matheuristic algorithms are developed
for solving the problem in Chapter 5. Several versions of these algorithms are derived
and evaluated. In Chapter 6, we consider a problem where a m-machine permutation flow
shop scheduling problem and a vehicle routing problem are integrated, and the objective
is to minimize the total tardiness. We present a direct coding for a complete solution
and a neighborhood method for finding a sequence and trips. We propose a Tabu search
algorithm for this problem, and the results show that the TS greatly improves the initial
solution given by EDD heuristic and where each trip serves only one job at a time.
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Chapter 2

Literature review

We present in this chapter the literature review concerning the flow shop scheduling
problem with the minimization of the total tardiness. Exact methods and heuristic ap-
proaches are described. Notice that a state-of-the-art survey has recently been published
on this topic [Vallada et al., 2008].

2.1 Introduction

Permutation flow shop sequencing problem with makespan minimization is a known
NP-hard problem for m machines (m ≥ 3). It is already strongly NP-hard for two ma-
chines for the total completion time minimization, it means that only exhaustive search
guarantees to find an optimal permutation. But finding an optimal permutation can be-
come prohibitively expensive, even for small instances [Pinedo, 1995]. In the following, we
focus on permutation flow shop, i.e. flow shop where the sequence of jobs is imposed to be
the same on all the machines. Such schedules are not dominant, but the restriction of this
family of schedules reduces the search to only one permutation sequence. In this chapter,
we review the most important existing methods, from the classical exact methods to the
most recent and effective heuristics and metaheuristic methods for the minimization of
the total tardiness. A new type of approximated algorithms, including exact resolution
inside heuristic approaches, has received a great interest in the literature, because of their
very good performances on some difficult problems [Maniezzo et al., 2010],[Talbi, 2013].
These methods are called matheuristics and these techniques are also reported below, for
a particular scheduling problem.

2.2 Exact methods

Exact methods have been used for the minimization of the total tardiness for per-
mutation flow shop scheduling problems. Due to the complexity of flow shop scheduling
problems, it appears that exact methods are impracticable for instances of more than a
few jobs and/or machines.

Sen et al [Sen et al., 1989] developed a branch-and-bound procedure that uses the
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tardiness of the jobs in a partial sequence as a lowed bound, an ordering criterion, that is
a dominance condition DC-SDG and a branch-and-bound algorithm that builds a sequence
from the back to the front. This dominance condition is the following:

DC-SDG: Let S = σ1JiJjσ3 be a sequence and S′ = σ1JjJiσ3 the same sequence with
Jj before Ji.

∑
Tj(S) ≤

∑
Tj(S

′) if di ≤ dj , p2,i− di ≤ p2,j − dj and p1,i ≤ min (p2,i, p1,j).

The results are compared to greedy algorithms implementing, the earliest due date
(EDD), the shortest processing time (SPT) and the minimum slack (SLACK) dispatching
rules. The experiments were carried out using a set of 640 problem instances generated
using a scheme similar to the one proposed in [Fisher, 1976]. The processing times for
both machines are randomly generated from a uniform distribution over the values 1 and
10. The due dates are also randomly generated from a uniform distribution between
P (1− T −R/2) and P (1− T +R/2) where T and R are two parameters called “inherent
tardiness factor” and “due date range” respectively. The value P is commonly a lower
bound on the makespan, but in this case it is the sum of the processing times in machine
M2 plus the smallest processing time in machine M1. Four problem sizes n ∈ {6, 8, 10, 12}
were proposed with T ∈ {0.25, 0.5, 0.75, 1} and R ∈ {0.25, 0.5, 0.75, 1}. Therefore, 64
combinations are generated, each of which is repeated 10 times. The results show that
the SPT heuristic with pairwise improvement phases performs very well for large T values
and the number of nodes processed by the branch-and-bound to find an optimal solution
tends to increase with increasing values of T and R.

Kim [Kim, 1993b] considers the two-machine flow shop scheduling problem with total
tardiness minimization. He developed a lower bound based on the sum of two lower bounds
computed from the set of jobs in the partial sequence and the set of jobs not included in
it, respectively. Dominance rules DC-K1 and DC-K2 are also presented. The aim of these
dominance conditions is to reduce the size of the search tree.

DC-K1: Let S be a sequence of type S = σJiJjπ where Ji and Jj are two consecutive
jobs, and σ and π two sub-sequences. Let S′ = σJjJiπ be the same sequence except for
the positions of jobs Ji and Jj .∑

Tj(S) ≤
∑

Tj(S
′)⇐ di ≤ dj and p1,i ≤ min (p2,i, p1,j) and p2,i − di ≤ p2,j − dj

DC-K2: Let WCmax be the worst makespan that an active schedule may have. The
inverse Johnson’s sequence has such a makespan. Each job Jj with dj ≥ WCmax is
scheduled last.

To compare this algorithm with the algorithm given in [Sen et al., 1989], the author
generated randomly 240 problem instances with the number of jobs ranges from 10 to 15 to
test the performance of the method. Processing times were uniformly distributed between 1
and 30 and due dates of the jobs were computed using two parameters, R (due-date range)
and T (tardiness factor) by using the method of [Potts and Van Wassenhove, 1982]. The
due dates are generated from a discrete uniform distribution in [P (1 − T − R/2), P (1 −
T + R/2)], where P is the sum of the processing times of all operations divided by two
(the number of machines). Several combinations of the parameters T , R and the number
of jobs were considered, with T ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, R ∈ {0.8, 1, 1.2, 1.4, 1.6, 1.8} and
n ∈ {10, 11, 12, 13, 14, 15}. The author compares the proposed branch-and-bound using
the lower bounds and dominance rules presented in the paper, to the branch-and-bound
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proposed by [Sen et al., 1989] and a similar branch-and-bound including the dominance
rule presented in [Sen et al., 1989]. The results show that the bounds and dominance rules
presented in this paper are much more powerful than the algorithms of Sen et al.

In [Kim, 1995], the author developed a branch-and-bound for the m-machine total
tardiness flow shop scheduling problem. The depth first exploration strategy is used,
the lower bound is computed for each node and a procedure to check the existence of
dominating sequences is applied at the root node in order to reduce the problem size. The
algorithm was tested using 480 randomly generated instances where the processing time
of the jobs are uniformly distributed between 1 and 30 and the due dates were generated
randomly. The results show that the proposed algorithm solved all 20 instances considered
by each group until n = 13 jobs and m = 8 machines. It was also able to solve all the
instances of the group n = 14 and m = 4 machines. Regarding the special sets of instances,
the branch-and-bound proposed was not able to solve all the 20 problems within the CPU
limit time set to 3600 seconds. In order to test the results, the algorithm is compared
to the branch-and-bound for the two-machine case presented in [Sen et al., 1989], since
the authors did not find any other work to solve the m-machine problem optimally. In
this case, 120 problems were generated with n ∈ {10, 11, 12, 13, 14, 15} and 20 instances
for each value of n. The proposed branch-and-bound was able to solve optimally all the
problem instances generated while the branch-and-bound proposed in [Sen et al., 1989]
did not solve any of the 20 instances with more than 13 jobs.

A branch-and-bound for the two-machine flowshop problem to minimize the total tar-
diness is proposed by [Pan and Fan, 1997]. The authors presented several dominance
properties for the precedence relations between jobs in an optimal solution, among them
DC-PF1 and DC-PF2 are given below.

DC-PF1: For any two jobs Ji and Jj , if p1,i ≤ p1,j , p2,i = p2,j and di ≤ dj , then there
exists an optimal sequence such that Ji precedes Jj .

DC-PF2: Let S = σ1JiJjσ3 be a sequence and S′ = σ1JjJiσ3.
∑
Tj(S) ≤

∑
Tj(S

′) if
p1,i ≤ min (p2,i, p1,j), p2,i ≤ p2,j and di ≤ dj .

A lower bound on the total tardiness of a subproblem is presented by the authors, which
improves Kim’s lower bound. The performance of the proposed algorithm is compared with
the method proposed by [Kim, 1993b]. A total of 600 problems was randomly generated
such that the processing times were uniformly distributed over the range 1−10. Due dates
were computed from another uniform distribution as previously done with P the sum of the
processing times of all the jobs on machineM2 plus the minimum processing time among all
the jobs on machine M1 [Sen et al., 1989]. A total of 60 sets of problems was considered
and for each one 10 replicates were generated randomly. The results showed that the
branch-and-bound proposed outperformed that presented by [Kim, 1993b] in terms of
average time and number of problems solved. The proposed method was able to solve all
the problems with up to 16 jobs and those with 18 jobs. Finally, this paper improved the
solution efficiency in comparison to Kim’s algorithm, by using the dominance rules and
the better quality of the lower bound developed.

In [Pan et al., 2002], the authors proposed another branch-and-bound algorithm to
minimize the total tardiness in a two-machine flow shop, where the sequence is built from
front to back. New dominance conditions (DC-PCC1 to DC-PCC4) are derived to determine
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the precedence constraints between jobs in optimal solution, and a new lower bound on
the total tardiness of a subproblem is presented. The initial solution is given by the EDD
rule. Four dominance conditions are given bellow:

DC-PCC1: For job Jj , if there is a job Ji satisfying p2,j ≤ p2,i, p1,i+p2,i ≤ p1,j +p2,j and
p2,i − di ≥ p2,j − dj , then an optimal sequence exists where Jj is not first in the sequence.

DC-PCC2: Let S = σ1JiJjσ3 be a sequence and S′ = σ1JjJiσ3.
∑
Tj(S) ≤

∑
Tj(S

′)
if C(Ji|σ1Jj) − di ≤ 0, C(Jj |σ1Ji) − dj ≤ 0 and C(Jj |σ1Ji) ≤ C(Ji|σ1Jj) (where C(α|β)
denotes the completion time of α if it is sequenced after β).

DC-PCC3: Let S = σ1Jiσ2Jjσ3 be a sequence and S′ = σ1Jjσ2Jiσ3.
∑
Tj(S) ≤∑

Tj(S
′) if C(Ji|σ1) − di ≥ 0, C(Jj |σ1) − dj ≥ 0, C(Jj |σ1) ≥ C(Ji|σ1), p1,j ≥ p1,i and

p2,j ≤ p2,i.
DC-PCC4: Let S = σ1JiJjσ3 be a sequence and S′ = σ1JjJiσ3.

∑
Tj(S) ≤

∑
Tj(S

′) if
C(Ji|σ1)− di ≥ 0, C(Jj |σ1)− dj ≥ 0, C(Jj |σ1) ≥ C(Ji|σ1) and min (p1,j , p2,i) ≥ p1,i.

The computational experiments were carried out using 600 randomly generated prob-
lems where the processing times are uniformly distributed between 1 and 10. The due
dates are also uniformly distributed as in the previous studies where P is the sum of the
processing times in machine M2 plus the smallest processing time in machine M1. Five
different problem sizes with n ∈ {16, 18, 20, 22, 24} were tested according to the parameters
T , R and n with T ∈ {0.25, 0.5, 0.75}, R ∈ {0.25, 0.5, 0.75, 1}. Therefore, 60 combinations
are generated; each one is repeated 10 times. The proposed branch-and-bound solved opti-
mally all the replicates up to 24 jobs with T = 0.5 and R = 0.5. A problem was considered
not solved if an algorithm needed more than 3600 seconds of elapsed time to obtain the
optimal solution. The results of the proposed algorithm are compared to the branch-and-
bound presented by Pan and Fan [Pan and Fan, 1997] which was able to solve optimally
all the 10 replicates up to 20 jobs where T = 0.25 and R = 0.75. Finally, the proposed
method performed better than the method proposed by Pan and Fan [Pan and Fan, 1997]
in terms of average CPU time and number of problems solved.

In [Schaller, 2005], Schaller presented a branch-and-bound algorithm for the two-
machine flow shop scheduling problem with the objective of minimizing the total tar-
diness. They improved three dominance conditions and a lower bound of Pan et al
[Pan et al., 2002]. A new dominance rule DC-S1 was also developed to help reducing the
search tree in this algorithm:

DC-S1: Let S = σ1JiJjσ3 be a sequence and S′ = σ1JjJiσ3. There exists an optimal
schedule such that job Ji is in the position immediately following Jj if Cj(S) − dj ≤ 0,
Ci(S

′)− di ≤ 0 and Cj(S) ≥ Ci(S′)
Three branch-and-bound algorithms were presented by combining the different dom-

inance conditions and lower bounds. A depth first strategy is used and the algorithms
were tested on randomly generated problems where the processing time of the jobs was
computed using a uniform distribution between 1 and 10. The due dates are also ran-
domly generated in the same way in [Pan et al., 2002], [Pan and Fan, 1997]. In total, 12
sets were generated and each problem set consists of 10 problems, where T ∈ {0.5, 0.75},
R ∈ {0.5, 1} and n ∈ {16, 18, 20}. The CPU time limit was set to 20 minutes, if a method
was not able to solve the problem within this time limit, the algorithm was terminated and
the best objective value found was returned. The computation and comparison showed
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that the last two of three proposed algorithms solved 80 problem instances with n = 16, 18
while the first method solved 78 of the 80 instances. For 40 instances with n = 20, the sec-
ond method solved 34 instances, the third one solved 36 instances while the first one solved
only 32 instances. The results showed that using the replacement dominance conditions,
the tighter lower bound and the new dominance condition improved the branch-and-bound
algorithm’s efficiency.

Billaut [Billaut, 2006] presented new dominance conditions for the F2||
∑
Tj problem

and proved that some dominance conditions of the literature were dominated. The results
shown that one of them is better than some existing dominance conditions.

DC-B1: Let S = σ1JiJjσ3 be a sequence and S′ = σ1JjJiσ3. If
∑
Tj(S) ≤

∑
Tj(S

′),
then the node with Jj before Ji can be pruned.

Chung et al [Chung et al., 2006] also developed a branch-and-bound algorithm for the
total tardiness m-machine flow shop problem. The authors proposed a machine-based
lower bound and a dominance rule for pruning nodes. They used depth first exploration
and a backtracking strategy for this algorithm. Computational experiments were carried
out using problem instances randomly generated. Twelve combinations of n and m values
are tested with n ∈ {10, 15, 20} and m ∈ {2, 4, 6, 8}. The authors proposed a set of 45360
problem instances where 19440 instances are for n = 10, 19440 instances are for n = 15 and
6480 instances for n = 20. The results are compared to the branch-and-bound proposed
by Kim [Kim, 1995] and it shows that their algorithm outperforms the method of Kim
both in terms of CPU time and the number of instances solved.

In [Billaut and Zhang, 2007], the authors proposed new dominance conditions and a
new lower bound which are implemented in a branch-and-bound for the F2||

∑
Tj prob-

lem. For the computational experiments, the authors generated randomly 20 instances
with n ∈ {12, 14, 16}, according to the definition given by [Pan and Fan, 1997]. The re-
sults prove the interest of the new tools proposed and the new proposed lower bound
remains comfortable when the number of jobs increases.

To conclude this presentation of exact methods, we can say that the exact methods
in the literature are limited to problems with up to 20 jobs and 8 machines. So to solve
larger problems of more realistic sizes in these conditions, it is necessary to find a solution
method providing of good quality in a reasonable amount of time. That is the reason why
heuristic and metaheuristic methods have been proposed in the literature. In the next
section, we review the most well known heuristics and metaheuristics for this problem.

2.3 Heuristic algorithms

Since the permutation flow shop problem is an NP-hard problem with computations
being prohibitively expensive, a practical approach is to use heuristic methods to obtain
near-optimal solutions. A heuristic algorithm is a method which finds “good” solutions in
an acceptable computation time, but without being able to ensure the optimality of the
solution. Heuristic algorithms can be broadly classified into dispatching rules, constructive
and improvement heuristics and metaheuristics. In the next subsections we present some
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heuristics according to this classification.

2.3.1 Dispatching rules

Sequencing and scheduling problems can be solved using dispatching rules. A dispatch-
ing rule assigns a priority to each job, which is based on the attributes of the jobs. Then,
jobs are sorted according to this rule and the job with the highest priority is selected to be
processed first. These rules are applied very often for finding an initial solution in some
heuristic and metaheuristic methods. Several dispatching rules are presented below:

• EDD (Earliest Due Date): jobs are sorted in the due date non decreasing order, i.e.
d[1] ≤ d[2] ≤ ... ≤ d[n] where d[k] is the due date of the job in position k.

• SPT (Shortest Processing Time): jobs are sorted in the processing time non decreas-
ing order, i.e. p[1] ≤ p[2] ≤ ... ≤ p[n] where p[k] is the processing time of the job in
position k. In a flow shop context, one has to specify on which processing time the
rule is applied, it can be for the processing time on machine M1, on machine M2,
the sum of processing times, etc.

• LPT (Longest Processing Time): jobs are sorted in the processing time non increas-
ing order, i.e. p[1] ≥ p[2] ≥ ... ≥ p[n] where p[k] is the processing time of the job in
position k.

• SLACK: During the construction of a schedule, it is possible to compute the comple-
tion time Cj of each candidate job Jj . The slack of job Jj is equal to sj = dj − Cj .
The candidate jobs are sorted in non decreasing order of sj . Generally, the job with
the smallest slack is selected, the completion times and the slacks of the remaining
jobs are updated and the process iterates until all the jobs have been scheduled.

• MDD (Modified Due Date): Similarly to the SLACK rule, the job are sorted in non
decreasing order of max(dj , Cj).

2.3.2 Constructive and Improvement heuristics

Constructive heuristics build a schedule from scratch by making a series of iterations
through a list of unscheduled jobs. A each iteration, one or more jobs are selected and
added to the schedule. Each decision is taken and remains unchanged later. Once a
complete sequence has been obtained, it is returned.

Contrary to constructive heuristics, improvement heuristics start from an existing so-
lution and apply some improvement procedures. Several constructive and improvement
heuristics are presented now.

The NEH algorithm is proposed by Nawaz et al [Nawaz et al., 1983] for the permutation
flow shop scheduling problem with m machines and the makespan minimization. This
detailed algorithm is given in Section 1.2.2. In the first step of the NEH algorithm, jobs
are sorted in the decreasing order of their total processing time. The NEH algorithm
starts by taking the first two jobs and the best sequence of these two jobs is used as an
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initial (and partial) sequence. Then, each job in the order of the list is inserted at the best
possible position in the partial list. The final list is returned.

The CDS algorithm is proposed by Campbell, Dudek and Smith [Campbell et al., 1970]
for solving the m-machine flow shop scheduling problem with makespan minimization.
The problem is solved by using m − 1 dummy two-machine flow shop problems. In sub-
problem k, dummy processing times are defined for M1: p′1,j =

∑k
i=1 pi,j and for M2:

p′2,j =
∑m

i=m−k+1 pi,j . Each sub-problem leads to a Johnson’s sequence, that is evaluated
for the whole problem with m machines. At the end, the best sequence is returned.

In [Kim, 1993a], the author used an improvement heuristic which starts with the EDD
sequence. Furthermore, a different way to sort the jobs is proposed where they are sorted
in non-increasing order of due dates, that is, latest due date (LDD) rule. Theses dis-
patching rules are used to generate the initial sequence for the NEH heuristic and lead
to NEHedd and NEHldd algorithms, respectively. Moreover, the author also analyzed
to modify priority/dispatching rules for the mean tardiness objective: EDD, SLACK,
SRMWK and MDD. Then, an improvement heuristic which starts from the solution given
by the EDD rule is proposed. The initial solution is improved by interchanging pairs
of jobs and this heuristic is called ENS. All these methods are compared to 1000 ran-
domly generated test problems where the processing times are generated from a uniform
distribution with a range from 1 to 35 and the due dates are generated following the
method proposed in [Potts and Van Wassenhove, 1982] as mentioned before. The tardi-
ness factor (T) was tested from 0.1 to 0.5 by step 0.1 and the due date range (R) from
0.8 to 1.8 by step 0.2. Several problem sizes were proposed with n ∈ {15, 20, 30, 40, 50}
and m ∈ {5, 10, 15, 20, 25}. The results showed that the NEHedd heuristic had a good
performance, but the best results were obtained by the ENS method.

In [Raman, 1995], the authors considered and developed several rules and heuristic
algorithms for the single machine and two-machine cases and evaluated these algorithms
for the m-machine flow shop problem. The method presented in [Ow, 1985] is extended
to consider m machines such that each machine in the flow shop is considered as a bot-
tleneck machine and a complete schedule is developed following the method presented in
[Ow, 1985]. At the end of the process, there are m possible sequences and the best one
is selected. This approach is called the Modified Focused Scheduling (MFS) method. In
an extensive computational study, the authors compared these methods with others and
show that the improvement procedure is very effective.

In [Koulamas, 1998], the authors presented an efficient shifting bottleneck algorithm
(SBFT) for the two-machine flowshop total tardiness problem by exploiting its relation-
ship to the single machine problem. The computational results show that the method
is very good. They compared the performance of the SBFT and NEH heuristic with
n ∈ {25, 50, 100}. Four problems are generated and solved for each value of n, the
relative range of due dates is RDD ∈ {0.2, 0.4, 0.6, 0.8, 1} and the tardiness factor is
TF ∈ {0.2, 0.4, 0.6, 0.8}. The results indicate that SBFT could be declared optimal in
many cases and obtain in general very good solutions. The SBFT solution never exceeds
the optimal solution by more than a predetermined value, and they showed that this bound
is tight.

In [Chakraborty and Laha, 2007], the authors developed and modified the NEH algo-
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rithm [Nawaz et al., 1983]. The proposed method is easy to implement and improves the
quality of the solution while maintaining the same computational complexity as NEH.
In the computational experiments, this method was run on 28 different problem sizes
with a number of jobs n ∈ {12, 18, 24, 30, 40, 50, 100} and a number of machines m ∈
{5, 10, 15, 20}. 15 instances were created for each problem size. Their results show that
the proposed algorithm outperforms NEH.

2.4 Metaheuristics

2.4.1 Simulated annealing

An integrate algorithm based on simulated annealing and Tabu search is presented in
[Adenso-Dı́az, 1996], starting from the solution of Ow in [Ow, 1985], which provides the
initial solution. The original parameters of the method are changed after some compu-
tational experiments and a simulated annealing algorithm is applied to improve it. This
solution is used as the initial one by a Tabu search method where the size of the neighbour-
hood is restricted. The author compares the solution obtained to a Tabu search starting
from the same initial solution without any limitation in the size of the neighbourhood. The
comparison is carried out with 720 randomly generated problems with n ∈ {10, 15, . . . , 50}
and m ∈ {5, 10, 15, 20}. The results show that the same final solution is obtained, but the
number of iterations is smaller in the case of the hybrid algorithm using a limited size of
the neighborhood.

Parthasarathy et al, in [Parthasarathy and Rajendran, 1998] presented two heuristics
based on the simulated annealing method for the flow shop and flowline-based manufac-
turing cell scheduling problem, to minimize the mean tardiness of jobs. They compared
the proposed heuristics with the heuristic proposed by [Gelders and Sambandam, 1978]
and [Kim, 1993a], by generating 30 problem instances with n ∈ {10, 15, 20, 25, 30} and
m ∈ {5, 10, 15, 20, 25, 30}. The processing times of jobs are generated from the discrete
uniform distribution in the range [1,99]. The proposed heuristics perform better than
those proposed by [Gelders and Sambandam, 1978] and [Kim, 1993a].

In [Hasija and Rajendran, 2004], a simulated annealing method is proposed to min-
imize the total tardiness of jobs. The authors use a specific heuristic for the initial
solution [Parthasarathy and Rajendran, 1998], which is improved by applying two per-
turbation schemes. The first perturbation is the same method as the one proposed in
[Parthasarathy and Rajendran, 1998], the second one is based on swap of jobs. The
authors compared the performance of the proposed heuristic with the TS proposed by
[Armentano and Ronconi, 1999] and the SA proposed by [Parthasarathy and Rajendran, 1998].
The test problems to evaluate the performance of the methods were based on the bench-
mark instances of [Taillard, 1993]. The due date of job Jj is given by dj = Tj × [1 +
u × 3], where Tj =

∑m
i=1 pi,j is the sum of the processing time of job Jj ; u is a uni-

form random number over the range [0, 1]. Several combinations of number of jobs
n ∈ {20, 50, 100} and number of machines m ∈ {5, 10, 20} were considered. The re-
sults show that the proposed SA algorithm obtains better results than the SA described in
[Parthasarathy and Rajendran, 1998] and the TS described in [Armentano and Ronconi, 1999].
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2.4.2 Tabu search

Several Tabu Search (TS) methods have been proposed for solving the permutation
flow shop scheduling problem.

In [Taillard, 1990], Taillard has shown that the problem may be solved efficiently by
TS technique, which can give better solutions than the NEH algorithm. He also shown
that a random pairwise swapping is computationally more expensive compared to a ran-
dom insertion method and that a random pairwise swapping does not yield to a better
convergence to the optimal solution than the random insertion method.

In [Nowicki and Smutnicki, 1996], the authors provided a special method based on the
Tabu Search algorithm with a reduced neighborhood search and using a modified NEH
algorithm for the initial solution. The method works faster and more efficiently than other
know algorithms. The authors use block properties to explore the different sequences and
the insertion of jobs in the adjacent blocks is promising. By virtue of these properties,
the authors were able to eliminate a considerable number of moves, thereby reducing the
search. The authors also employ the back jump approach in which, if there is no change
in the solution for a specific number of iterations, the algorithm restarts using the current
best solution, to create neighboring solutions. This is known as the diversification scheme
in TS terminology.

In [Ben-Daya and Al-Fawzan, 1998], the authors proposed a tabu search approach
which suggests simple techniques for generating neighborhoods of a given sequence and
a combined scheme for intensification and diversification, that has not been considered
before. The authors use the NEH heuristic to generate the initial solution for their TS
approach. They generated neighborhood structure by using a compromise by alternating
random insertion, block insertion, and random swapping in a random fashion. This means
that at each iteration of the neighborhood generation process, one of the three methods
is selected randomly to generate the next neighbor of the current sequence. For selecting
the best neighbor in the candidate list, the authors chose the first sequence that improved
the makespan for the next iteration. A Tabu list with capacity 7 was used in this ap-
proach. The authors construct a frequency matrix that records the number of times each
job is located in a particular position among all the examined sequences. A sequence con-
structed using this matrix is used to randomly restart the neighborhood search process.
Their results improve the previous implementations of the Tabu search due to Taillard
[Taillard, 1990] and simulated annealing algorithm due to [Ogbu and Smith, 1990].

In [Armentano and Ronconi, 1999], the authors propose a heuristic based on Tabu
search for flow shop scheduling problem to minimize the total tardiness. They compare
their method with the NEH heuristic and the optimal branch-and-bound algorithm of
[Kim, 1995], and showed that all the versions have an excellent performance. The authors
presented also strategies such as diversification, intensification and analyzed the neighbor-
hood restriction. The association of the diversification and intensification can improve the
results of some problems with the same computation time.

In [Grabowski and Wodecki, 2004], the authors used some new properties of a classic
flow shop scheduling problem, to minimize the makespan. They propose a new and very
fast local search based on a Tabu search method. The authors reduced calculations for
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the solution in the search of the neighborhood by using a lower bound on the makespan
instead of computing the real makespan. The authors also propose a dynamic Tabu list
that contains ordered pair of jobs and with a dynamic length. The tabu list is initiated
empty and the oldest element in the list is deleted if no favorable moves are obtained in a
particular iteration and the iteration is continued. Moreover, the size of the list can also be
changed at each iteration. The authors also applied a perturbation mechanism that allows
the algorithm to escape from a local optimum. This mechanism allows to diversify the
search space and to visit new regions, where “good solutions” can be found. The pertur-
bation mechanism is activated when there is no improvement in the solution after a fixed
number of iterations. This parameter in the algorithm is chosen experimentally. The au-
thors compared their algorithm with the best speed and accuracy which have been obtained
by TS approach of [Nowicki and Smutnicki, 1996], [Grabowski and Wodecki, 2001] and by
GA approach of [Reeves and Yamada, 1998]. They tested their algorithm on benchmark
instances proposed in [Taillard, 1990]. The authors found that their algorithm was outper-
forming the algorithm of [Nowicki and Smutnicki, 1996] when the problem size increases.
They also observed that their algorithm was much faster than the existing algorithms
while finding comparable solutions.

2.4.3 Genetic algorithm

In [Onwubolu and Mutingi, 1999], the authors propose a genetic algorithm for the m-
machine flow shop scheduling problem, considering the total tardiness, the number of tardy
jobs and the bi-objective problem. The initial population is generated randomly with the
popsize equal to 20. They defined the crossover operator with a probability (pcross) of
0.70 and a mutation operator (pmutate) of 0.40. In order to evaluate each individual of
the solution space, the authors used a fitness function which applies the mapping process
of [Goldberg, 1989]. The authors combined also replacement strategies which has been
formulated and presented in the past. In this study, the authors evaluated also the ob-
jective function and advanced the best performing individuals into the next state. This
technique prevents the lost of the best solutions and allows to obtain better results than
[Gupta et al., 1993]. The authors compared their results with another metaheuristic and
show that it is both more computationally effective and efficient than simulated annealing
[Zegordi et al., 1995]. The results show that the GA can obtain near-optimal solutions for
the flow shop problem and large problem instances, with an acceptable computation time.

In [Ruiz et al., 2006], the authors presented two GA with makespan minimization for
the permutation flow shop scheduling problem (this paper is cited here because we have
been inspired by this method). The first method, they applied is the “DOE approach” of
[Montgomery, 2000] to set the parameters and the operators of the GA. An initial pop-
ulation is based on NEH heuristic and on a modification of this method. The authors
also proposed four new crossover operators that perform better than many other methods.
Furthermore, they used a restart scheme, reinitializing a given portion of the population,
therefore reintroducing diversity in the population and allowing to escape from local op-
timal. In the second method, a local search is applied to some individuals after selection,
crossover and mutation. The two proposed methods were compared to 11 other methods
such as GA, TS, SA and other recent advanced algorithms. For the evaluations, new data
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sets have been generated using standard benchmark instances of Taillard [Taillard, 1993]
with 120 different problem instances with 20 jobs and 5 machines to 500 jobs and 20
machines. The stopping criterion is equal to n(m/2)t milliseconds, where t = 90. The
obtained results showed that the proposed algorithms outperform all the other compared
algorithms and they are easy to implement.

In [Vallada et al., 2008], the author reviewed and evaluated the heuristics and meta-
heuristics for the minimization of the total tardiness for the m-machine flow shop schedul-
ing problem. A total of 40 different methods, 23 heuristics and dispatching rules and
17 metaheuristics were implemented and tested with the same benchmark of instances
containing 540 test problems with up to 350 jobs and 50 machines. The configuration of
tardiness factor (T ), due date range (R), number of jobs (n) and number of machines (m)
are T ∈ {0.2, 0.4, 0.6}, R ∈ {0.2, 0.6, 1}, n ∈ {50, 150, 250, 350} and m ∈ {10, 30, 50}. The
limit time of CPU is set for all the metaheuristic to n(m/2)/90 milliseconds. The authors
proved that the heuristic algorithms which are based on the insertion and interchange of
jobs have the best performances. They also concluded that TS methods are good meta-
heuristics for permutation flow shop scheduling problem with the minimization of total
tardiness.

In [Vallada and Ruiz, 2010], the authors developed three genetic algorithms to mini-
mize the total tardiness for permutation flow shop scheduling problem. The authors used
advanced techniques such as path relinking, local search and procedures to diversify the
population. In the local search, a job is removed from the sequence and inserted in any
possible position. The job is finally placed at the better position in terms of total tardiness
value. To ensure the diversity of the population, the authors compute a value for each job,
based on the number of times this job appears in the different positions in the solutions
of the population. In addition, they applied a speed up procedure in order to reduce the
computation effort for the local search technique. In the computational experiments, the
instances are generated by the procedure of [Vallada et al., 2008]. Each algorithm is tested
with a set of 24 randomly generated test instances. The three proposed algorithms are
compared with the best existing methods and the results show that it is the better existing
algorithm for the minimization of total tardiness.

2.5 Matheuristics

Since several years, a new type of approximated algorithms, including exact resolution
inside heuristic approaches, has received a great interest in the literature, because of their
very best performances on some difficult problems [Maniezzo et al., 2010], [Talbi, 2013].
These methods are called matheuristics. In [Della Croce et al., 2011] the authors introduce
an MIP resolution into a neighborhood search algorithm for the F2||

∑
Cj problem. The

authors presented a two-step method: the first step consists in finding an initial solution by
using a recovering beam search algorithm and in the second step, an intensive neighborhood
search is performed. In the second step also, the structure of the neighborhood should be as
much as possible “orthogonal” to the structure of the neighborhood used in the first step,
in order to prevent from a local optimum. In the computational experiments, 20 instances
are generated as in [Della Croce et al., 2004] with n ∈ {100, 300, 500} and processing times
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randomly generated in the range [1,100]. The proposed method is compared with RBS,
ILS (Integrate Local Search) and ACO (Ant Colony Optimization) for n = 100. In other
cases (n = 300, 500), this method is compared with RBS and ILS. The results showed that
their method outperform the RBS, ILS, ACO (n = 100) and RBS, ILS for n = 300, 500.
But ILS performed better than their procedure on one instance over 20 (for n = 500). The
obtained results demonstrated that an hybrid approach implementing a post-optimization
refinement procedure by means of an MILP solver is able to achieve valuable results that
are better than those given by existing heuristics.
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Chapter 3

Exact methods

In this chapter, we propose and describe mixed integer linear programming formulation
and branch-and-bound algorithms for the problem.

3.1 Mixed Integer Linear Programming (MILP)

We propose a MILP formulation of the problem based on positional variables (firstly
introduced in [Wagner, 1959]): xj,k is equal to 1 if job Jj is in position k, and 0 otherwise.
Ci,k is the completion times of the job in position k on machine Mi, and Tk ≥ 0 is the
tardiness of the job in position k. The MILP is the following:

Minimize
n∑
k=1

Tk (3.1)

subject to

n∑
k=1

xj,k = 1, ∀j ∈ {1..n} (3.2)

n∑
j=1

xj,k = 1, ∀k ∈ {1..n} (3.3)

C1,1 =

n∑
j=1

p1,jxj,1 (3.4)

C1,k = C1,k−1 +
n∑
j=1

p1,jxj,k, ∀k ∈ {2..n} (3.5)

Ci,1 = Ci−1,1 +
n∑
j=1

pi,jxj,1, ∀i ∈ {2..m} (3.6)

Ci,k ≥ Ci−1,k +

n∑
j=1

pi,jxj,k, ∀i ∈ {2..m}, ∀k ∈ {2..n} (3.7)

53



3.2. BRANCH AND BOUND (B&B)

Ci,k ≥ Ci,k−1 +
n∑
j=1

pi,jxj,k, ∀i ∈ {2..m}, ∀k ∈ {2..n} (3.8)

Tk ≥ Cm,k −
n∑
j=1

djxj,k, ∀k ∈ {1..n} (3.9)

variables Ci,k, ∀i ∈ {1..m}, ∀k ∈ {1..n}; Tk, ∀k ∈ {1..n} (3.10)

xj,k ∈ {0, 1}, ∀j ∈ {1..n}, k ∈ {1..n} (3.11)

Constraints (3.2) and (3.3) ensure that there is exactly one job per position and one
position per job. Constraints (3.4) and (3.6) compute the completion times on machineM1.
Constraints (3.5), (3.7) and (3.8) determine the completion times on machine Mi, ∀i ≥ 2.
Constraints (3.9) determine the tardiness of job in position k. This model contains n2

binary variables, n(m+ 1) continuous variables and [(2n− 1)(m+ 1) + 2] constraints.

3.2 Branch and Bound (B&B)

3.2.1 B&B for the m-machine permutation flowshop scheduling problem

In this section, we consider a B&B algorithm for the problem. A B&B algorithm
searches the complete space of solutions for a given problem for the best solution (see
Section 1.2.1). The detail of this branch-and-bound algorithm is given in Algo. 3.

Algorithm 3 Branch-and-bound algorithm

1: Initiation
2: UB ← Calculate initial solution using heuristic method (EDD, NEH,...)
3: R0 ← Calculate root node
4: L is the list of nodes which have to be explored
5: while (L not empty) do
6: Extract a node N ∈ L
7: LB(N)← calculate LB of node N
8: if LB(N) < UB then
9: if N is a leaf then

10: UB ← LB(N)
11: else
12: Calculate the children or child nodes
13: Insert them into L
14: end if
15: end if
16: end while
17: return UB (optimal value)

Our algorithm uses a depth first search strategy for the following reasons:
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• the number of active nodes is always less than or equal to n,

• the bottom of the tree is reached faster, allowing potentially good upper bounds to
be found earlier,

• a stack can be used to make easy the computations.

Upper bound

We use the heuristic method called EDD (Earliest Due Date) for computing the total
tardiness of the upper bound. The current UB will be replaced by the LB of a complete
solution (a leaf of a tree search is generally a feasible solution and its LB corresponds to
the objective function) if total tardiness of LB is less than current UB.

Lower bound

For each partial sequence, a lower bound can be obtained, consisting of two independent
bounds, that are calculated from two mutually exclusive sets of jobs: (1) the set of jobs
included in the partial sequence (σ) = (σ(1), ..., σ(s)), indicating that job σ(j) occupies
the jth position on each machine, for 1 ≤ j ≤ s, where 1 ≤ s ≤ n and (2) the set of jobs
not included (σ) = (σ(1), ..., σ(n− s)) in it. The sum of these two bounds for node (σσ)
= (σ(1), ..., σ(s), σ(1), ..., σ(n− s)) serves as a lower bound on the total tardiness.

• A bound for the jobs in (σ)

Since the sequence of jobs in a partial sequence is defined, the sum of tardinesses of
the jobs for the partial sequence (σ) can be calculated as follows:

Ci,j = max(Ci−1,j , Ci,j−1) + pi,j ,

Tj = max(0, Cm,j − dj),
∀i ∈ {1, ...,m}, ∀j ∈ {1, ..., s}

remember that Ci,j , and pi,j are the completion time and the processing time of job
Jj on machine Mi and dj is the due date of job Jj . The value of the total tardiness
of σ is denoted by LB(σ).

• A bound for the jobs in (σ)

The lower bound of the jobs in (σ) can be calculated as follows. First, we build m
pseudo data sets for (σ) where the data set number k is defined as follows:

– for i ∈ {1, ..., k − 1} and for j ∈ {s+ 1, ..., n}: pi,j = minj′∈σ pi,j′

– for i ∈ {k + 1, ...,m} and for j ∈ {s+ 1, ..., n}: pi,j = minj′∈σ pi,j′

– processing times of the jobs in σ on machine Mk are sorted in SPT order:
pk,s+1 ≤ pk,s+2 ≤ ... ≤ pk,n

– due dates of the jobs in σ are sorted in EDD order: ds+1 ≤ ds+2 ≤ ... ≤ dn
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The total tardiness of the jobs in σ is computed, assuming that these jobs are se-
quenced after σ in the order (s + 1, ..., n). The value of the total tardiness for the
pseudo data set number k is denoted by LB(σ)(k). The value of the lower bound of
the total tardiness of σ is:

LB(σ) = max
k∈{1,...,m}

LB(σ)(k)

The lower bound associated to the node (σσ) is equal to LB(σ) + LB(σ).

3.2.2 Lower bounds for 2-machine permutation flow shop scheduling
problem

In this section, we propose some classical lower bounds for the F2||
∑
Tj problem

[Ta et al., 2013a]. Then, a lower bound based on a partial relaxation of the MILP is
proposed.

3.2.2.1 Classical lower bounds

We consider here the computation of lower bounds at the root node of a search tree
procedure. The lower bounds that we present in this paragraph are very classical in the
scheduling literature (see [Pan and Fan, 1997] for example).

From a given instance I, two dummy instances I1 and I2 are generated.

Instance I1 is built as follows. The processing time of each job on machine M1 is equal
to the minimum processing time of jobs on machine M1. The processing times of jobs on
machine M2 are given by the processing time of jobs on machine M2 in SPT order. The
due dates of the jobs are given by the due dates in EDD order. The jobs are sequenced
from 1 to n and the value of the objective function for this instance is denoted by LB1.

Instance I2 is built as follows. The processing times of jobs on machine M1 are given
by the processing time of jobs on machine M1 in SPT order. The processing time of each
job on machine M2 is equal to the minimum processing time of jobs on machine M2. The
due dates of the jobs are given by the due dates in EDD order. The jobs are sequenced
from 1 to n and the value of the objective function for this instance is denoted by LB2.

3.2.2.2 Improved lower bound

The idea of these lower bounds hybridization is to use the MILP model and to relax
the integrity of a subset of variables corresponding to some jobs [Ta et al., 2013a]. By
doing this, some jobs are completely scheduled (those for which the variables are binary)
and some jobs are scheduled preemptively (those for which the variables are continuous).
In Alg. 4, we denote by C the set of variables xj,k that are continuous (in [0, 1]), by B the
set of variables that remain binary and J is a set of jobs. We assume that |B| = H` is
fixed. We denote by MILP (C,B) the resolution of the MILP model with the variables of
C relaxed and the variables of B binary.

The particular case where B = ∅ (H` = 0) corresponds to the classical linear relaxation.
This lower bound is denoted by LB3.
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Algorithm 4 Hybrid lower bound algorithm

while stopping criterion not met do
Choose R randomly in [1, n−H` + 1]
B = {R,R+ 1, ..., R+H` − 1}
LB = MILP (J \ B,B)
LBmax = max{LB,LBmax}

end while
LB4 = LBmax
return LB4

In our implementation, the stopping criterion is a time limit denotes by TimeLimLB.

3.2.3 Dominance conditions for m = 2 machines

A dominance condition helps us to prune nodes. We introduce the notations:

- T (S): total tardiness of sequence S

- S = σ1iσ2jσ3 denotes that we consider in S a subsequence σ1, then job i, then a
subsequence σ2, then job j and finally a subsequence σ3

- S′ = σ1jσ2iσ3 denotes exactly the same sequence as S except for the interchange of
i and j.

- C(α | β) denotes the completion time of α if it is sequenced after β, with α and β
subsequences of jobs.

In [Pan and Fan, 1997] proposed dominance conditions in another back to front branch
and bound algorithm. The DC-PF1 and DC-PF2 conditions are general and can be used
in an B&B algorithm (see Chapter 2).

Pan et al [Pan et al., 2002] developed a B&B algorithm where the sequence is built
from front to back, with new dominance conditions and a new lower bound (see Chapter
2).

3.3 Computational experiments

3.3.1 Data generation

We have tested the algorithms on data sets which have been randomly generated for
case m = 2 (notice that there is no benchmark instance for the two-machine flowshop
problem). The processing times pi,j have been generated in [1,100], the due dates dj have
been generated in [50, 50n]. The number of jobs n belongs to {10, 14, 20} for upper bounds
and n ∈ {20, 30, 50, 70, 100, 150, 200, 250, 300, 350, 400, 500} for lower bounds. 30 instances
have been generated per value of n.

The time limit of CPLEX and TimeLimLB have been fixed to 600 seconds, sizeH` = 6.
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3.3.2 Comparison of the exact methods

Three upper bounds are compared in terms of quality: the branch-and-bound that
doesn’t use the dominance conditions (B&B), the branch-and-bound that uses the domi-
nance condition (denoted by (B&BDC) and CPLEX (uses model in Section. 3.1).

Table 3.1: Comparison of B&B algorithms and CPLEX for n = 10
B&B B&BDC CPLEX

Ins
∑
Tj Cpu(s) node(s)

∑
Tj Cpu(s) node(s)

∑
Tj Cpu(s)

1 692 0,07 3701 692 0,05 2498 692 0,24
2 515 0,02 923 515 0,02 877 515 0,90
3 1008 0,08 3706 1008 0,06 3083 1008 0,50
4 907 0,09 4538 907 0,07 3704 907 1,07
5 1118 0,00 112 1118 0,00 87 1118 0,20
6 112 0,03 1675 112 0,01 825 112 0,17
7 1077 0,04 2052 1077 0,04 1869 1077 0,60
8 974 0,02 831 974 0,01 635 974 0,4
9 636 0,05 2498 636 0,02 1146 636 0,14
10 343 0,12 5966 343 0,08 4467 343 0,20
11 826 0,04 1955 826 0,03 1529 826 0,12
12 796 0,03 1469 796 0,03 1287 796 0,69
13 204 0,02 1228 204 0,01 754 204 0,17
14 371 0,12 6195 371 0,05 2596 371 0,39
15 496 0,02 1211 496 0,02 1034 496 0,16
16 121 0,03 1052 121 0,02 697 121 0,5
17 604 0,06 3072 604 0,05 2420 604 0,53
18 254 0,03 1468 254 0,02 932 254 0,07
19 1589 0,02 1164 1589 0,02 1104 1589 0,35
20 0 0,01 1 0 0,01 1 0 0,04
21 927 0,03 1363 927 0,02 1189 927 0,32
22 76 0,01 401 76 0,01 308 76 0,25
23 115 0,04 2017 115 0,03 1428 115 0,10
24 99 0,02 1037 99 0,02 748 99 0,08
25 291 0,11 5531 291 0,06 3147 291 0,09
26 1193 0,04 1914 1193 0,03 1843 1193 0,21
27 760 0,00 120 760 0,00 114 760 0,11
28 120 0,01 580 120 0,01 321 120 0,11
29 1377 0,03 1926 1377 0,02 1318 1377 0,07
30 754 0,08 4055 754 0,07 3406 754 0,82

Average 0,04 0,03 0,32

As expected, we can see in Table 3.1, 3.2, that the value of the total tardiness of B&B
is equal to value of B&BDC and to value returned by CPLEX. The computation time of
B&BDC is the quickest in three methods for n = 10. However, the computation time of
CPLEX is faster than B&BDC and B&B methods for n = 14, 20. The computation time
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Table 3.2: Comparison of B&B algorithms and CPLEX for n = 14
B&B B&BDC CPLEX

Ins
∑
Tj Cpu(s) node(s)

∑
Tj Cpu(s) node(s)

∑
Tj Cpu(s)

1 850 13,51 422767 850 7,47 244112 850 1,56
2 857 23,30 827826 857 13,68 501374 857 4,66
3 2318 119,38 4285800 2318 64,01 2294787 2318 0,89
4 983 6,14 211325 983 4,32 151005 983 0,75
5 720 6,51 206642 720 3,48 118801 720 1,16
6 1108 61,85 2249608 1108 25,4 970641 1108 2,41
7 1713 0,29 7719 1713 0,23 6114 1713 0,76
8 929 156,54 5644618 929 81,41 3079850 929 19,30
9 1014 23,45 766716 1014 19,74 646350 1014 10,02
10 1512 9,60 289300 1512 5,12 170854 1512 1,00
11 887 12,18 371564 887 6,18 198995 887 2,47
12 956 8,59 267228 956 4,64 149350 956 2,16
13 1176 7,18 250426 1176 4,34 155860 1176 1,28
14 1027 9,42 301240 1027 4,24 139858 1027 7,38
15 866 12,67 415272 866 4,90 170943 866 0,24
16 1341 0,69 18327 1341 0,45 12173 1341 1,26
17 1319 69,95 2608974 1319 23,14 890680 1319 0,83
18 1571 2,72 75587 1571 1,88 54034 1571 4,00
19 2397 9,47 303541 2397 6,11 202129 2397 0,97
20 725 12,3 402165 725 8,73 295276 725 15,15
21 722 24,59 765251 722 4,18 143134 722 0,73
22 1190 30,77 1057627 1190 15,88 565951 1190 2,39
23 244 2,12 67076 244 1,32 46765 244 1,85
24 39 4,78 188980 39 1,42 60952 39 0,29
25 929 66,65 2553782 929 13,74 541870 929 6,85
26 781 3,38 123939 781 0,97 36977 781 0,13
27 1488 4,45 131941 1488 3,00 88801 1488 2,82
28 683 27,1 930349 683 13,44 491349 683 4,19
29 1169 2,81 82662 1169 1,11 33975 1169 1,59
30 1769 2,32 69933 1769 0,86 26635 1769 0,35

Average 24,49 11,51 3,32

of B&BDC is quicker than B&B, because it uses dominance conditions for pruning nodes,
so the number of explored nodes is smaller than for B&B.

In Table 3.3, the results show that CPLEX performs well for n = 20, but the its
computation time increases significantly (average computation time equals 124,12 seconds,
0,32 seconds for n = 10 and 3,32 seconds for n = 14). 90% of B&BDC can not give a
solution in less than 600 seconds.
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Table 3.3: Comparison of B&BDC algorithm and CPLEX for n = 20
B&BDC CPLEX

Ins
∑
Tj Cpu(s) node(s)

∑
Tj Cpu(s)

1 - >600 - 1190 600,71
2 525 456.68 14239117 525 2,70
3 - >600 - 218 0,95
4 - >600 - 2378 37,54
5 - >600 - 1572 257,89
6 - >600 - 979 1,65
7 - >600 - 1594 26,16
8 - >600 - 2817 6,21
9 - >600 - 1969 16,36
10 - >600 - 2632 4,61
11 33 0.11 2392 33 600,14
12 - >600 - 1014 14,95
13 - >600 - 1757 135,96
14 3536 361.23 5568560 3536 6,24
15 - >600 - 2462 29,67
16 - >600 - 2406 144,08
17 - >600 - 325 34,03
18 - >600 - 2275 109,99
19 - >600 - 1297 3,67
20 - >600 - 2005 600,82
21 - >600 - 2274 15,44
22 - >600 - 1116 14,08
23 - >600 - 1059 1,61
24 - >600 - 3887 94,53
25 - >600 - 1714 351,29
26 - >600 - 291 116,05
27 - >600 - 3139 18,46
28 - >600 - 729 0,79
29 - >600 - 1506 122,85
30 - >600 - 2054 354,21

Average 124,12

3.3.3 Comparison of lower bounds

Four lower bounds are also compared: the two classical lower bounds (LB1 and LB2),
the linear relaxation LB3 and the partial linear relaxation (also called the hybrid algorithm,
denoted by LB4). The results are presented in Table 3.4.

In Table 3.4, column ‘Best’ always indicate the number of times the lower bound is
the best among the four lower bounds and column ‘Cpu(s)’ is the computation time in
seconds.

It is clear that LB1 and LB2 do not outperformed by the other bounds. However, these
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Table 3.4: Comparison of lower bounds
LB1 LB2 LB3 LB4

n Best Cpu(s) Best Cpu(s) Best Cpu(s) Best Cpu(s)

20 0 0 0 0 0 0,04 30 2,74
50 0 0 0 0 0 0,26 30 99,63
100 0 0 0 0 1 1,68 30 602,98
150 0 0 0 0 1 5,3 30 686,56
200 0 0 0 0 2 12,92 29 675,9
250 2 0 2 0 3 24,85 29 617,97
300 0 0 0 0 18 48,13 12 604,2
350 1 0 1 0 15 76,42 17 650,59
400 0 0 3 0 15 140,01 14 607,45
500 3 0,01 3 0 25 203,67 9 635,85

bounds can be computed very quickly, which is a very interesting advantage in a search
tree procedure. For more than 300 jobs, one can see the performance of LB4 decreasing.
The problem comes from the size of the problem to solve. With n = 300 jobs, the number
of binary variables is equal to 1800 (H` × n, with H` = 6) and CPLEX is not always able
to return a feasible solution within the time limit. Anyway, for small size instances, this
method outperforms the classical linear relaxation, and such a method should be tested
in a branch-and-bound algorithm, where the size of the problem to solve is generally – at
least for the F2||

∑
Tj problem – smaller than 50 jobs.

3.4 Conclusion of chapter 3

In this chapter, we proposed exact methods: MILP and branch-and-bound for m-
machine permutation flow shop scheduling problem to minimize total tardiness. We tested
the methods with small to medium instances for two machines and number of jobs n ∈
{10, 14, 20} random. The results show that the computation time of CPLEX is quicker than
our B&B methods for n ≥ 14. The B&B using the dominance conditions performs well
and its computation time is less than the B&B method that doesn’t use the dominance
conditions. A new lower bound algorithm and classical lower bound are proposed and
evaluated. The new lower bound performs well for small instances.
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Chapter 4

Heuristic algorithms

A heuristic algorithm is a method which finds “good” solutions within an acceptable
computation time without being able to ensure the optimality of the solution. A practical
approach is to use heuristic methods to obtain quickly near-optimal solutions. In this
chapter, we present heuristics and metaheuristic algorithms that we have developed and
the computational results that we have obtained.

4.1 Basic heuristics

In this section we propose two basic heuristic algorithms, EDD and NEH, that run in
O(n log n) time.

4.1.1 EDD algorithm

EDD (Earliest Due Date, see also Section 2.3.1 page 46): The job with the smallest due
date is selected first, min{dj}, where dj denotes the due date of the job j. The algorithm
is described in Algo. 5.

Algorithm 5 EDD algorithm

1: Input: S = a set of jobs,
2: Sorted: the jobs by non decreasing order of dj ,
3: Output: A set of jobs sorted in non decreasing order of dj

4.1.2 NEH algorithm

In [Nawaz et al., 1983], the authors develop NEH heuristic for m-machine flow shop
scheduling problem with makespan minimization. We propose and apply the method
for minimizing the total tardiness for the m-machine permutation flow shop scheduling
problem. NEH algorithm is described in details for the problem below (see Algo. 6).

We propose another version of NEH heuristic for the problem: NEHEDD algorithm is
described in Algo. 7.
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Algorithm 6 NEH algorithm

1: Input: S = jobs sorted in the decreasing order of Pj ,

2: where Pj =
m∑
i=1

pi,j , ∀j = 1, . . . , n

3: Consider the partial sequence with minimum total tardiness and minimum makespan
in case of ties among {(S[1], S[2]), (S[2], S[1])}

4: for k = 3 to n do
5: Test the insertion of S[k] at any possible position in S′ from 1 to k + 1
6: Keep the best insertion, i.e. the insertion with minimum

∑
Tj , and the insertion

with minimum makespan in case of ties.
7: end for

Algorithm 7 NEHEDD algorithm

1: Input: S = jobs sorted in EDD order,
2: Consider the partial sequence with minimum

∑
Tj and minimum makespan in case of

ties among {(S[1], S[2]), (S[2], S[1])}
3: for k = 3 to n do
4: Test the insertion of S[k] at any possible position in S′ from 1 to k + 1
5: Keep the best insertion, i.e. the insertion with minimum total tardiness, and the

insertion with minimum makespan in case of ties.
6: end for

4.2 Truncated search tree methods

4.2.1 Beam search algorithm

Principles

Beam search (BS) algorithms are truncated branch-and-bound algorithms which were
first introduced in the context of scheduling by Ow and Morton [Ow and Morton, 1988].
The exploration of the tree is a breadth first search with aggressive pruning of the branches
at each level, according to an evaluation function. In a BS algorithm, only the most
promising w nodes (instead of all nodes) at each level of the search tree are retained for
further branching. The parameter w is called the beam width. The beam width controls
the extensiveness of the search. The greater the beam width, the fewer nodes are pruned,
which increases the cost of computational effort. When the beam width is an infinite
number (or a sufficiently high number), no nodes are pruned and the beam search method
becomes the branch-and-bound method with breadth first exploration. If w = 1, the
beam search extends only one solution path and it becomes a greedy method. There is
no backtrack in the beam search and no possible recover from wrong decisions, therefore
there is no guarantee that the method finds an optimal solution, because the best solution
may have been potentially pruned.
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Algorithm

The main steps of the beam search algorithm are described in Algo. 8 [Ta et al., 2013b].

Algorithm 8 Beam search algorithm

1: Initialization:
2: C = ∅
3: B = {root}
4: Repeat:
5: for each node S in B do
6: Generate the corresponding children of S: τ1, τ2, . . .
7: Calculate LB(τj) and UB(τj).
8: V (τj) = αUB(τj) + (1− α)LB(τj)
9: Select the w best child nodes and add them to C.

10: end for
11: B = ∅
12: Selection:
13: Select w best nodes in C and add them to B.
14: C = ∅.
15: Until ((the nodes in B are leaves (they correspond to a complete sequence)

or (CPU > TimeLimitBS ))
16: Select the best node.

A counter-intuitive example of the Beam Search algorithm with w = 1 and
w = 2

BS algorithm is illustrated in Fig. 4.1 and Fig. 4.2 for a scheduling problem with
six jobs and two machines. The objective of this section is to illustrate the fact that the
Beam Search algorithm with a beam width of 2 can be worse than the same method with
a beam width of 1, whatever the computation time is. In other words, enlarging the size of
the beam is not a guaranty of quality improvement. V denotes the value of the evaluation
function of each node. At each level, only w nodes are kept. The data are given in Table
4.1.

Table 4.1: Data of six jobs and two machines
j 0 1 2 3 4 5

p1,j 39 69 2 80 19 25
p2,j 73 68 10 16 3 85
dj 239 27 64 15 235 233

In Fig. 4.1 (w = 1), the final solution is {2, 5, 3, 0, 4, 1} and
∑
Tj = 388. In Fig. 4.2

(w = 2), the final solution is {2, 5, 1, 3, 4, 0} and
∑
Tj = 402. We can see that if w = 2

the children nodes of node σ = (2, 5, 3) are not kept because two children nodes of node
σ = (2, 5, 1) are more promising. But at the end, these nodes lead to a solution with total
tardiness of 402, whereas node (2, 5, 3) leads to a better solution.
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So, increasing the size of the beam width increases the computation time and does not
guaranty that the solution that is returned will be better.

V=561 V=468 V=321∗

UB=742, 526, 419, 402

0 1 2 3 4 5

UB=526
V=525 V=439 V=466

0

1 3 4 5
V=416 V=367

UB=419
V=426 V=388 V=330∗

1

0

3 4
V=440 V=378

UB=402
V=343∗ V=390

0 1 4
V=395∗ V=423 V=416

14 41
V=428 V=388∗

Beam width (w=1)

LB=18, V=561

Figure 4.1: Illustration of BS with beam width (w = 1)

4.2.2 Recovering beam search algorithm

Principles

The Recovering Beam Search (RBS) algorithm is an hybrid heuristic method for combi-
natorial [Della Croce and T’kindt, 2002], [Della Croce et al., 2004], [Ta et al., 2013c] op-
timization, which is an improvement of the beam search algorithm. As discussed before,
the BS cannot recover from decisions: if a branch leading to the optimal solution in the
search tree is pruned in the nodes evaluation process, there is no way to reach afterwards
that solution. An improvement of RBS is the recovering step, which aims at recovering
from previous wrong decisions. This step is invoked to each of the w best child nodes gen-
erated. For a given node, the recovering phase, by means of interchange operators applied
to the current partial schedule S, checks whether the current solution is dominated by
another partial solution S′, sharing the same search tree level. If a better partial solution
S′ is found, it becomes the new current partial solution.
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Figure 4.2: Illustration of BS with beam width (w = 2)

Neighborhood operators

Two perturbations mechanisms have been implemented [Della Croce et al., 2004],
[Wu et al., 2007]. We denote by S the current sequence. The neighborhood operators
applied to S = S1/S[i]/S2/S[j]/S3 with S1, S2 and S3 three subsequences of S and S[i] and
S[j] the jobs in positions i and j in S (i 6= j) are the following:

• SWAP: A neighbor of S is created by interchanging the jobs in position i and j,
leading to sequence S′ = S1/S[j]/S2/S[i]/S3.

• EBSR (Extraction and Backward Shifted Re-insertion): A neighbor of S is created
by extracting S[j] and re-inserting S[j] backward just before S[i], leading to sequence
S′ = S1/S[j]/S[i]/S2/S3.

• EFSR (Extraction and Forward Shifted Re-insertion): A neighbor of S is created
by extracting S[i] and re-inserting it forward immediately after S[j], leading to a
sequence S′ = S1/S2/S[j]/S[i]/S3.

The three neighborhood operators are illustrated in Fig. 4.3.
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EBSR

EFSR

S′

SWAP

1 2 3 45 6 7 8 9 10

S1 S[i]S2 S[j] S3

S′ 1 2 3 4 5 67 8 9 10

S1 S[i] S2S[j] S3

1 2 3 4 5 6 7 8 9 10S

S′

S1 S[i] S2 S[j] S3

1 2 3 45 67 8 9 10

S1 S[j] S2 S[i] S3

1 2 3 4 5 6 7 8 9 10S

S1 S[i] S2 S[j] S3

1 2 3 4 5 6 7 8 9 10S

S1 S[i] S2 S[j] S3

Figure 4.3: Illustration of three neighborhood operators

Algorithm

The main steps of the RBS algorithm are described in Algo. 9.

4.2.3 Evaluation of nodes for BS and RBS algorithms

Each node of the search tree is evaluated by an evaluation function V , based on a
weighted sum of a lower bound (LB) and an upper bound (UB). The function V is
defined by

V = αUB + (1− α)LB

where 0 ≤ α ≤ 1 is an experimentally defined parameter.

The UB at each node is calculated by sequencing the unscheduled jobs in EDD order
after the scheduled jobs. The LB used in the evaluation function is the same method as
the one described in Section 3.2.
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Algorithm 9 Recovering beam search algorithm

1: Initialization:
2: C = ∅
3: B = {root}
4: Repeat:
5: for each node S in B do
6: Generate the corresponding children of S: τ1, τ2, . . .
7: Calculate LB(τj) and UB(τj).
8: V (τj) = αUB(τj) + (1− α)LB(τj)
9: Select the w best child nodes and add them to C.

10: end for
11: B = ∅
12: Selection:
13: Select the w best nodes in C and add them to B.
14: Set C = ∅.
15: Recovering:
16: for each node S in B do
17: Apply the neighborhood operators on S and search for a partial solution S′ that

dominates S.
18: if S′ is found then
19: Replace S by S′ in B
20: end if
21: end for
22: Until ((the nodes in B are leaves (they correspond to a complete sequence)

or (CPU > TimeLimitRBS ))
23: Select the best node.

4.3 Metaheuristic algorithms

In this section we present two metaheuristic developed for solving our problem. The
first is a genetic algorithm, the second is a Tabu search. The general principle of these
methods has been described in Section 1.2.2.

4.3.1 Genetic algorithm

We describe in this section our implementation [Ta et al., 2013d], [Ta et al., 2014b] of
the crossover and of the mutation operators.

Genetic operators

• Coding: The crucial step in designing a Genetic algorithm is to define an encoding,
i.e. a way to represent a solution. In the case of the m-machine permutation flow
shop scheduling problem with n jobs indexed from 1 to n, an individual is represented
by a permutation.
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• Initial population: The initial population P0 contains PopSize individuals. The
individual is obtained by sequencing the jobs according to a given rule. The other
individuals are randomly generated.

In GAEDD, one individual is given by EDD algorithm, and the others are randomly
generated. In GANEH , one individual is given by NEH algorithm described in
Algo. 6, and the others are randomly generated. In GAEN , one individual is given
by the best sequence among EDD and NEH and the others are randomly generated.
And GAE&N , two individuals are given by EDD and NEH, the others are randomly
generated.

• Fitness: The fitness of an individual S is the value of the objective function
∑
Tj(S)

of the corresponding sequence.

• Crossover Several crossover operators are used, the one-point crossover (X1), the
linear order crossover (LOX), the Similar Job Order Crossover or (SJOX), the Simi-
lar Block Order Crossover or (SBOX) and the Similar Block 2-Point Order Crossover
or (SB2OX). The operators are described the follow:

– X1 [Della Croce et al., 2004]: One crossover point is randomly generated in
{1..n}. Let A = A1//A2 and B = B1//B2 be the two parents. Two offsprings
are calculated. Offspring 1 denoted by O1 contains the jobs of A1 in the order
of A and the jobs of A2 in the order of B. Offspring 2 denoted by O2 contains
the jobs of B1 in the order of B and the jobs of B2 in the order of A. The X1
operator is illustrated in Fig. 4.4.

1 2 3 4 5 6 7 8 9 10A

1 2 3 45 67 8910O1

1 23 45 67 8 9 10O2

12 46 8910B 3 57

Figure 4.4: Illustration of X1 crossover operator

– LOX [Della Croce et al., 2004]: Two different crossover points are randomly
generated {1..n}. Let A = A1//A2
//A3 and B = B1//B2//B3 be the two parents. Two offsprings are calcu-
lated. Offspring 1 denoted by O1 contains in the middle the jobs of A2 in the
order of A. The jobs of A1∪A3 in the order of B fill the first and the last part
of A. Offspring 2 denoted by O2 contains in the middle the jobs of B2 in the
order of B. The jobs of B1∪B3 in the order of A fill the first and the last part
of B. The LOX operator is illustrated in Fig. 4.5.
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1 2 3 4 5 6 7 8 9 10A

12 46 8910B

123

7

910O1

12 6 8910O2

3 57

4 5 6 7 8

3 4 5

Figure 4.5: Illustration of LOX crossover operator

– SJOX [Ruiz et al., 2006]: Let A and B be two parents which are chosen ran-
domly in the initial population. Two offsprings O1 and O2 are created as
follows: First, identical jobs at the same positions on both parents are copied
in both offspring (Fig. 4.6(a)). Next, one point crossover is randomly chosen
and the missing jobs in the offspring O1 and O2 are copied into the parents A
and B respectively (Fig. 4.6(b)). Then the jobs at the right side of the cut
point are filled according to the job sequence of parents B and A to form the
offspring O1 and O2 respectively (Fig. 4.6(c)).

– SBOX [Ruiz et al., 2006]: Let A and B be two parents which are chosen random
in initial population. Two offsprings O1 and O2 are created as follows: First,
blocks of at least two consecutive identical jobs at the same positions on both
parents are copied in the two offspring (Fig. 4.7(a)). Second, one point
crossover is randomly chosen and the missing jobs in the offspring O1 and O2
are copied from the parents A and B respectively (Fig. 4.7(b)). Then the
jobs by the right side of the cut point are filled according to the job sequence of
parents B and A to form the offspring O1 and O2 respectively (Fig. 4.7(c)).

– SB2OX [Ruiz et al., 2006]: The main difference with the SBOX crossover is
that in the second step, two-point crossover is randomly chosen and the missing
jobs in the offspring O1 and O2 between these two points are copied from the
parents A and B respectively. Then the offsprings are filled by copying the jobs
of parents B and A to form the offspring O1 and O2 respectively.

In our implementation of the Genetic Algorithm, the crossover operator is chosen
randomly, with equal probability.

• Mutation: The mutation operators have been used:

– SWAP (see Section 4.2.2)

– EBSR (see Section 4.2.2)

– EFSR (see Section 4.2.2) These three mutation operators (SWAP, EBSR,
EFSR) are illustrated in Fig. 4.3.

– Inversion: given a sequence S = S1/S[i]/S2/S[j]/S3, with S1, S2 and S3 three
subsequences and S[i] and S[j] the jobs in positions i and j are randomly chosen
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(a) The identical jobs in both parents are copied over to the offspring
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(b) The missing jobs in the offsprings are copied to the parents respectively
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57 11

O2 4 8 9 10357 11
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1 2 6 12

7 11 12 6
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6 6 6 6

?

? ? ?

666

Figure 4.6: Illustration of SJOX crossover operator

(i < j) in S. A neighbor of S is created by inserting S[j]/S2/S[i] between S1
and S3, where S2 is the inverse of sequence S2 (see Fig. 4.8).

• Selection and generational scheme: At iteration k, two parents are randomly
selected in population Pk−1. The two crossover operators are applied on the two
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(b) The missing jobs in the offsprings are copied to the parents respectively
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Figure 4.7: Illustration of SBOX crossover operator

parents, generating four offsprings, inserted into population set Ck. The process is
repeated until CrossSize offsprings have been generated.

The mutation operator is applied on randomly selected individuals of population
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1 2 3 4 5 6 7 8 9 10S

S′

S1 S[i] S2 S[j] S3

1 2 3 4567 8 9 10

S1 S[j] S2 S[i] S3

Figure 4.8: Illustration of inversion mutation operator

Pk−1. The new individuals constitute a population Mk of size MutSize.

The PopSize best individuals of Pk−1 ∪ Ck ∪Mk constitute population Pk.

• Stopping criterion: The process iterates until a given time limit has been reached.
This time limit is denoted by TimeLimGA = n(m/2)t ms [Vallada et al., 2008],
where t = 90.

A lot of parameters and operators have been tested for the genetic algorithms, it
concerns:

• the generation on the initial population,

• the crossover operators,

• the mutation operators.

The tests do not lead to the best results that have been obtained and therefor, they are
not presented here, but given in Appendix B.

4.3.2 Tabu search

We describe in this section our implementation of the TS algorithm [Ta et al., 2013a].

Initial solution

The proposed Tabu search algorithm starts from an initial solution. This initial solution
is classically generated by using simple heuristic methods, such as EDD, SPT, NEH, etc.
In the TS that we propose, different initial solutions are considered. If the initial solution
is given by EDD rule, the method is denoted by TSEDD. If the initial sequence is given by
applying an adaptation of NEH algorithm (see Section 4.1.2 Algo. 6), the method is
denoted by TSNEH . Finally, if the initial sequence is given by the best solution beetween
EDD and NEH, the method is denoted by TSEN .

Neighborhood definition

We denote by S the current sequence. We denote by N(S) the set of all neighbors of S
which can be created by SWAP, EBSR, EFSR, Inversion operators (see Section 4.3.1).
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Moves and selecting the best neighbor

The objective function is to minimize the total tardiness. The best neighbor in the
candidate list is the non-tabu sequence with the smallest total tardiness. The move strat-
egy which is applied to the list is the first-in-first-out (FIFO) strategy. Old attributes are
deleted as new attributes are inserted.

Tabu list

The size of the tabu list is a very important parameter, which can be either fixed or
variable. In [Glover, 1989, Glover, 1990], the author provided some general methods of
tabu list implementations. In [Nowicki and Smutnicki, 1996] the authors generate a tabu
list by storing attributes of the visited permutations, defined by certain pair of adjacent
jobs. Our tabu list contains pairs of positions (i, j), corresponding to the neighborhood
definition and the size of the tabu list is fixed.

Stopping condition

The algorithm is stopped when the time limit has been reached. This time limit is
denoted by TimeLimitTS = n(m/2)t ms, with t = 90.

Detailed algorithm

The detailed TS algorithm is given in Algo. 10. FlagSwap, FlagEBSR, FlagEFSR
and FlagInversion allow to make a selection of the neighbors. LimitSwap, LimitEBSR,
LimitEFSR and LimitInversion allow to limit the size of the neighborhood. Del(T ) deletes
the upper element of the Tabu list and Add(T, (k, j)) adds element (k, j) to the Tabu list.

The other parameters that have been implemented and tested for the Tabu Search are
reported in Appendix C.

4.4 Computational experiments

The algorithms have been tested on a PC Intel coreTM i5 CPU 2.4GHz. 108 bench-
mark instances proposed in [Vallada et al., 2008] have been used for the evaluation. Nine
instances of these benchmark instances are used for each combination of n and m, with
n ∈ {50, 150, 250, 350} and m ∈ {10, 30, 50}. In these instances, the processing times are
uniformly distributed between 1 and 99. The due dates are generated with an uniform
distribution between P (1− τ −ρ/2) and P (1− τ +ρ/2) following the method of Potts and
Van Wassenhove [Potts and Van Wassenhove, 1982] with P a lower bound of the makespan
and τ and ρ two parameters called tardiness factor and due date range, which take the
following values: τ ∈ {0.2, 0.4, 0.6}, ρ ∈ {0.2, 0.6, 1}. The first instance (among five) of
[Vallada et al., 2008] for each tuple (n,m, τ, ρ) has been used for the tests, which gives the
108 instances.
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Algorithm 10 Tabu search algorithm

1: Initialization
2: S0 = initial solution, S = current solution
3: S′ = S0 // best solution of N(S)
4: S∗ = S0 // best solution of N(S) and non-tabu
5: f∗ = f(S0) // f∗ value of S∗ and f(S0) value of S0
6: T = ∅ // T is the tabu list
7: while (CPU ≤ TimeLimitTS ) do
8: f(S′) =∞,
9: for k = 0 to n− 1 do

10: for j = k + 1 to n do
11: if (FlagSwap = 1) and (j − k ≤LimitSwap) then
12: S = S′, f(S) = f(S′), SWAP(S, (k, j)),
13: if ((k, j) /∈ T ) then
14: Calculate(f(S)),
15: if (f(S) < f(S′)) then S′ = S, f(S′) = f(S), move = (k, j), end if
16: end if
17: end if
18: if (j 6= k + 1) and (FlagEBSR = 1) and (j − k ≤LimitEBSR) then
19: S = S′, f(S) = f(S′), EBSR(S, (k, j)),
20: if ((k, j) /∈ T ) then
21: Calculate(f(S)),
22: if (f(S) < f(S′)) then S′ = S, f(S′) = f(S), move = (k, j), end if
23: end if
24: end if
25: if (j 6= k + 1) and (FlagEFSR = 1) and (j − k ≤LimitEFSR) then
26: S = S′, f(S) = f(S′), EFSR(S, (k, j)),
27: if ((k, j) /∈ T ) then
28: Calculate(f(S)),
29: if (f(S) < f(S′)) then S′ = S, f(S′) = f(S), move = (k, j), end if
30: end if
31: end if
32: if (j 6= k + 1) and (FlagInversion = 1) and (j − k ≤LimitInversion) then
33: S = S′, f(S) = f(S′) Inversion(S, (k, j)),
34: if ((k, j) /∈ T ) then
35: Calculate(f(S)),
36: if (f(S) < f(S′)) then S′ = S, move = (k, j), end if
37: end if
38: end if
39: end for
40: end for
41: if (f(S′) < f∗) then S∗ = S′, f∗ = f(S), end if
42: if (SizeTabu ≥ TabuMax) then Del(T ) end if
43: Add(T, (k, j))
44: end while
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In all tables, each line summarizes the results for 9 instances and of course, the methods
may return solutions with the same quality, so the total per line of ‘Best’ may exceed 9.

4.4.1 Comparison of EDD and NEH sequences

In Table 4.2, column ‘Best’ for ‘EDD’ indicates the number of times the method ‘EDD’
outperforms the method ‘NEH’, column Cpu(s) indicates the average computation time of
‘EDD’ per nine instances, column ‘∆EDD’ indicates the average deviation between ‘EDD’
and ‘NEH’. Column ‘Best’ for ‘NEH’ indicates the number of times the method ‘NEH’
outperforms the method ‘EDD’, column Cpu(s) indicates the average computation time of
‘NEH’ per nine instances, column ‘∆NEH ’ indicates the average deviation between ‘NEH’
and the ‘EDD’.

The results show that NEH outperforms EDD in most of the cases.

∆EDD =
EDD −min(EDD,NEH)

EDD

∆NEH =
NEH −min(NEH,EDD)

NEH

Table 4.2: Comparison of EDD and NEH algorithms
EDD NEH

n×m Best Cpu(s) ∆EDD Best Cpu(s) ∆NEH

50 × 10 2 0,01 32,17% 7 0,01 10,66%
50 × 30 0 0,00 41,44% 9 0,00 0,00%
50 × 50 0 0,01 31,52% 9 0,01 0,00%
150 × 10 3 0,01 22,06% 6 0,01 23,70%
150 × 30 2 0,01 34,45% 7 0,01 11,97%
150 × 50 1 0,01 30,00% 8 0,01 3,77%
250 × 10 4 0,01 12,90% 5 0,01 35,46%
250 × 30 2 0,01 23,37% 7 0,01 14,52%
250 × 50 2 0,01 26,72% 7 0,01 5,55%
350 × 10 4 0,01 6,74% 5 0,01 35,13%
350 × 30 2 0,01 23,43% 7 0,01 16,72%
350 × 50 2 0,01 21,12% 7 0,01 10,09%

24 25,49% 84 13,96%

4.4.2 Comparison of the beam search algorithms

The time limit of BS algorithms is fixed to TimeLimitBS = n(m/2)t/1000 seconds.

Three beam widths (w = 1, 3, 5) of BS method have been tested and compared in terms
of quality. In Table 4.3, column ‘Best’ for ‘BSw’ indicates the number of times the method
BSw outperforms the other methods, column Cpu(s) indicates the average computation
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time of BSw per nine instances, column ‘∆BSw ’ (BSw ∈ {BS1, BS3, BS5}) indicates the
average deviation between BSw and the best method between BS1, BS3 and BS5.

∆BSw =
BSw −min(BS1, BS3, BS5)

BSw

Table 4.3: Comparison of beam search algorithms
BS1 BS3 BS5

n×m Best Cpu(s) ∆BS1 Best Cpu(s) ∆BS3 Best Cpu(s) ∆BS5

50 × 10 2 0,30 19,56% 2 0,64 3,49% 8 1,65 0,04%
50 × 30 0 2,38 9,48% 3 5,16 3,35% 6 11,73 0,31%
50 × 50 1 6,03 8,72% 0 14,49 2,27% 8 31,58 0,05%
150 × 10 2 13,30 10,01% 9 36,59 0,00% 2 53,38 9,66%
150 × 30 2 103,57 1,39% 5 195,20 1,56% 2 202,82 15,05%
150 × 50 5 295,34 0,60% 4 338,27 2,76% 1 339,26 6,99%
250 × 10 7 74,68 1,90% 4 88,03 6,39% 2 88,86 20,82%
250 × 30 5 481,53 1,48% 5 301,52 3,84% 1 301,93 12,81%
250 × 50 7 567,28 0,30% 2 565,56 3,45% 0 569,91 12,16%
350 × 10 7 123,37 1,42% 3 123,11 3,39% 3 123,58 8,33%
350 × 30 6 426,43 0,47% 4 425,38 7,67% 1 427,84 14,15%
350 × 50 6 800,10 0,04% 3 798,13 10,45% 1 810,59 16,34%

50 241,19 5,75% 44 241,06 3,96% 35 246,06 9,34%

We can see from Table 4.3 that the value of the beam width that leads to the best
results is w = 1. The example 4.2.1 shows that beam width with w = 1 is better than
w = 2. However, the average deviation between the solutions returned by this method and
the best solutions is 5,97%. This value is around 3,96% for BS3 (it is better than BS1)
and 9,34% for BS5.

4.4.3 Comparison of the recovering beam search algorithms

The time limit of RBS algorithms is fixed to TimeLimitRBS = n(m/2)t/1000 seconds.

Three recovering beam widths (w = 1, 3, 5) of the RBS method have been tested
and compared in terms of quality. In Table 4.4, column ‘Best’ for ‘RBSw’ indicates
the number of times the method RBSw outperforms the other methods, column Cpu(s)
indicates the average computation time of RBSw per nine instances, column ‘∆RBSw ’
(RBSw ∈ {RBS1, RBS3, RBS5}) indicates the average deviation between RBSw and the
best method between RBS1, RBS3 and RBS5.

∆RBSw =
RBSw −min(RBS1, RBS3, RBS5)

RBSw

Each line summarizes the results for 9 instances and of course, the methods may return
solutions with the same quality, so the total per line of ‘Best’ may exceed 9.
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Table 4.4: Comparison of recovering beam search algorithms
RBS1 RBS3 RBS5

n×m Best Cpu(s) ∆RBS1 Best Cpu(s) ∆RBS3 Best Cpu(s) ∆RBS5

50 × 10 2 0,46 4,43% 3 1,53 4,8% 8 2,73 0,14%
50 × 30 0 3,15 7,97% 1 11,33 4,42% 8 16,61 0,06%
50 × 50 0 7,30 3,34% 2 25,70 0,64% 7 43,14 0,15%
150 × 10 8 26,53 0,85% 3 52,93 5,53% 2 54,08 16,52%
150 × 30 9 126,34 0,00% 2 189,22 18,86% 2 193,25 19,70%
150 × 50 9 305,44 0,00% 1 338,98 15,72% 1 339,01 16,92%
250 × 10 8 80,24 0,11% 3 88,83 19,17% 2 89,38 20,48%
250 × 30 9 301,28 0,00% 4 304,04 15,75% 4 303,07 17,36%
250 × 50 8 567,14 11,11% 6 570,98 26,10% 7 503,95 17,19%
350 × 10 9 123,50 0,00% 3 124,11 15,51% 3 123,78 17,61%
350 × 30 9 427,46 0,00% 6 427,25 12,09% 6 427,34 12,33%
350 × 50 9 797,47 0,00% 5 816,58 16,47% 5 803,50 16,01%

81 230,53 1,38% 40 245,96 11,96% 54 243,95 12,72%

We can see in Table 4.4 the value of the beam width that leads to the best results
(w = 1). For more than 150 jobs, it is clear that RBS1 has very good performances in
comparison with RBSw (w = 3, 5) and the computation time of RBS1 (230,53s) is faster
in comparison with RBS3 (245,96s) and RBS5 (243,95s). The average deviation between
the solutions returned by this method (w = 1) and the best solutions is 1,38%. This value
is around 11,96% for RBS3 and 12,72% for RBS5.

4.4.4 Comparison of the genetic algorithms

The time limit of the GA is fixed to TimeLimGA = (n(m/2) × 90)/1000 seconds
(as defined in [Vallada et al., 2008]). For the genetic algorithms, a lot of preliminary
experiments have been conducted for the parameters settings. At the end, two parameters
sets seem to lead to the best results, denoted case 1 and case 2.

case1 case2

PopSize = |Pk| 150 150
CrossSize = |Ck| 200 600
MutSize = |Mk| 100 360

For the same instance, the genetic algorithm has been executed ten times and it returns
quite always solutions with the same quality. The average relative deviation between ten
runs is less than 3%

The several GA methods are compared in terms of quality. In Tables 4.5, column
‘Best’ for ‘GA1(G)’ (G ∈ {EDD,NEH,EN,E&N}) indicates the number of times the
method GA1(G) outperforms the other methods, column Cpu(s) indicates the average
computation time of GA1(G) per nine instances, column ‘∆G’ indicates the average devia-
tion between GA1(G) and the best method between GA1(EDD), GA1(NEH), GA1(EN)
and GA1(E&N).
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Column ‘Best’ for ‘GA2(G)’ (G ∈ {EDD,NEH,EN,E&N}) indicates the number of
times the method GA2(G) outperforms the other methods, column Cpu(s) indicates the
average computation time of GA2(G) per nine instances, column ‘∆G’ indicates the aver-
age deviation between GA2(G) and the best method between GA2(EDD), GA2(NEH),
GA2(EN) and GA2(E&N).

∆G =
GAc(G)−min(GAc(EDD), GAc(NEH), GAc(EN), GAc(E&N))

GAc(G)

with (c ∈ {1, 2})
As we can see in Table 4.5, the genetic algorithm with the initial population given

by EDD rule leads to the best results. In Table 4.5, on average for case 1, the deviation
between the solutions returned by this method and the best solutions is 2,75%. This value
is around 7,98% for GA1(NEH), 5,84% for GA1(EN) and 3,01% for GA1(E&N). For
case 2, the average deviation between the solutions returned by this method and the best
solutions is 2,62%. This value is around 9,19% for GA2(NEH), 8,24% for GA2(EN) and
2,82% for GA2(E&N).
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Table 4.5: Comparison of genetic algorithms of case 1 and case 2

GA1(EDD) GA1(NEH) GA1(EN) GA1(E&N)
n×m Best Cpu(s) ∆EDD Best Cpu(s) ∆NEH Best Cpu(s) ∆EN Best Cpu(s) ∆E&N

50 × 10 5 22,00 0,93% 4 22,00 2,92% 2 22,00 3,83% 4 22,00 3,60%
50 × 30 3 67,01 2,76% 3 67,00 2,87% 1 67,00 4,10% 2 67,01 4,48%
50 × 50 5 112,01 1,48% 0 112,01 2,62% 2 112,01 1,88% 2 178,11 1,65%
150 × 10 6 67,02 3,51% 4 67,02 7,45% 2 67,02 9,61% 3 67,02 4,25%
150 × 30 6 202,04 6,98% 1 202,02 9,64% 2 202,05 10,14% 3 202,05 4,32%
150 × 50 3 337,05 9,89% 1 337,03 11,97% 2 337,05 10,43% 3 337,04 2,41%
250 × 10 6 112,03 0,95% 3 112,04 5,40% 3 112,07 6,58% 6 112,06 1,63%
250 × 30 6 337,05 0,32% 2 337,05 7,17% 3 597,56 5,48% 4 337,05 3,49%
250 × 50 5 562,08 1,22% 3 562,06 5,36% 2 562,06 2,29% 2 562,11 2,71%
350 × 10 6 157,09 3,45% 2 157,03 17,25% 3 157,07 7,34% 4 157,08 2,30%
350 × 30 5 472,13 1,18% 1 472,06 16,85% 3 472,10 5,26% 5 472,12 2,76%
350 × 50 6 787,09 0,32% 1 787,11 6,31% 3 787,14 3,09% 2 787,15 2,58%

62 269,55 2,75% 25 269,54 7,98% 28 291,26 5,84% 40 275,07 3,01%

GA2(EDD) GA2(NEH) GA2(EN) GA2(E&N)

50 × 10 5 22,03 0,34% 4 22,02 2,52% 4 22,03 2,52% 4 22,02 1,47%
50 × 30 4 67,11 1,75% 4 67,04 2,04% 4 67,05 2,04% 1 67,04 3,13%
50 × 50 6 112,04 0,70% 2 112,04 2,28% 2 112,05 2,28% 1 112,05 2,03%
150 × 10 8 67,12 1,22% 2 67,09 12,69% 2 67,16 7,90% 3 67,09 1,45%
150 × 30 6 202,09 5,42% 2 202,13 9,77% 2 202,14 9,04% 3 202,11 3,66%
150 × 50 5 337,15 0,58% 2 337,17 5,92% 2 337,14 2,68% 2 337,17 4,78%
250 × 10 7 112,19 1,58% 2 112,38 22,43% 3 112,32 8,80% 5 112,19 2,91%
250 × 30 7 337,18 9,95% 2 337,35 6,30% 2 337,21 16,18% 1 337,19 5,35%
250 × 50 4 562,26 3,20% 1 638,75 6,89% 1 562,36 5,71% 6 562,41 1,26%
350 × 10 7 157,21 5,30% 2 157,62 24,97% 2 157,35 17,46% 4 157,30 1,23%
350 × 30 7 472,24 0,69% 2 472,27 6,94% 1 472,45 18,23% 4 472,33 4,11%
350 × 50 7 787,39 0,67% 1 787,43 7,51% 1 787,76 6,05% 3 787,33 2,41%

73 269,67 2,62% 26 276,11 9,19% 26 269,75 8,24% 37 269,69 2,82%

81



4.4. COMPUTATIONAL EXPERIMENTS

Comparison of case 1 and case 2 for the best genetic algorithm

In Table 4.6, column ‘Best’ for ‘GAχ(EDD)’ indicates the number of times the method
GAχ(EDD) outperforms the other methods, column Cpu(s) indicates the average com-
putation time of GAχ(EDD) per nine instances, column ‘∆χ’ (χ ∈ {1, 2}) indicates the
average deviation between GAχ(EDD) and the best method between GA1(EDD) and
GA2(EDD).

∆χ(EDD) =
GAχ(EDD)−min(GA1(EDD), GA2(EDD)

GAχ(EDD)

We can see from Table 4.6, that the genetic algorithm (GA1(EDD)) with the initial
population given by EDD rule and the parameters of case 1 (PopSize = |Pk| = 150
individuals, CrossSize = |Ck| = 200 individuals, MutSize = |Mk| = 100 individuals)
leads to the best results. The average deviation between the solutions returned by this
method and the best solutions is 1,39%. This value is around 2,96% for GA2(EDD).

Algorithm GA1(EDD) has been used in the following for the comparisons with the
Tabu search algorithms.

Table 4.6: Comparison of best genetic algorithms of case 1 and case 2
GA1(EDD) GA2(EDD)

n×m Best Cpu(s) ∆1(EDD) Best Cpu(s) ∆2(EDD)

50 × 10 6 22,00 1,12% 5 22,03 2,79%
50 × 30 3 67,01 2,52% 6 67,11 1,48%
50 × 50 2 112,01 1,30% 7 112,04 0,12%
150 × 10 6 67,02 1,92% 5 67,12 1,29%
150 × 30 4 202,04 1,14% 6 202,09 0,49%
150 × 50 2 337,05 5,24% 7 337,15 0,07%
250 × 10 6 112,03 0,38% 6 112,19 1,33%
250 × 30 6 337,05 0,74% 4 337,18 11,86%
250 × 50 6 562,08 0,58% 4 562,26 2,57%
350 × 10 9 157,09 0,00% 2 157,21 9,90%
350 × 30 6 472,13 1,30% 5 472,24 1,61%
350 × 50 6 787,09 0,42% 4 787,39 2,04%

62 269,67 1,39% 61 269,55 2,96%

4.4.5 Comparison of the Tabu search algorithms

For the Tabu list algorithms, a lot of preliminary experiments have conducted to the
following parameters settings. The time limit of TS is TimeLimTS = (n(m/2)×90)/1000
seconds.

The three best TS methods are compared in terms of quality. In Table 4.7, column
‘Best’ for ‘TS`(T )’ (with ` is a number element of Tabu list (` = 40), T is an initial
solution(T ∈ {EDD,EN,NEH})) indicates the number of times the method TS`(T )
outperforms the other methods, column Cpu(s) indicates the average computation time of
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Table 4.7: Comparison of Tabu search algorithms
TS40(EDD) TS40(EN) TS40(NEH)

n×m Best Cpu(s) ∆EDD Best Cpu(s) ∆EN Best Cpu(s) ∆NEH

50 × 10 6 22,01 0,23% 4 22,00 0,72% 5 22,01 0,63%
50 × 30 7 67,02 0,15% 2 67,03 1,93% 0 67,06 1,81%
50 × 50 7 112,04 0,28% 1 112,06 1,14% 2 112,05 1,12%
150 × 10 5 67,18 1,53% 6 67,02 0,88% 2 67,22 6,26%
150 × 30 8 202,28 2,60% 1 202,62 5,74% 2 202,74 2,11%
150 × 50 8 337,78 0,01% 1 338,18 8,30% 0 337,72 10,69%
250 × 10 7 112,67 0,75% 4 112,74 1,83% 4 113,10 1,51%
250 × 30 7 338,47 0,05% 3 339,38 3,93% 4 339,10 3,97%
250 × 50 7 565,79 0,22% 3 566,30 2,15% 2 565,65 4,73%
350 × 10 9 159,00 0,00% 4 158,28 2,20% 2 159,08 13,88%
350 × 30 6 476,29 11,30% 3 478,27 15,30% 2 475,08 4,06%
350 × 50 8 793,20 0,08% 2 797,05 4,94% 2 799,20 6,33%

85 271,14 1,43% 34 271,74 4,09% 27 271,33 4,76%

TS`(T ) per nine instances, column ‘∆T ’ indicates the average deviation between TS`(T )
and the best method between TS40(EDD), TS40(EN) and TS40(NEH).

∆T =
TS`(T )−min(TS40(EDD), TS40(EN), TS40(NEH))

TS`(T )

In Table 4.7, we can also see that the Tabu search algorithm where the initial solution
is given by EDD rule leads to the best results. On average, the deviation between the
solutions returned by this method and the best solutions is 1,43%. These values are
around 4,09% for TS40(EN) and 4,76% for TS40(NEH).

4.4.6 Comparison of the best algorithm among BS, RBS, GA and TS

Now, the four algorithms (BS, RBS, GA, TS) are compared. The results are presented
in Table 4.8. Column ‘Best’ for ‘Algoχ’ (Algoχ ∈ {BS1, RBS1, GA1(EDD), TS40(EDD)})
indicates the number of times the method Algoχ outperforms the other methods, col-
umn Cpu(s) indicates the average computation time of Algoχ per nine instances, column
‘∆Algoχ ’ indicates the average deviation between Algoχ and the best method between BS1,
RBS1, GA1(EDD) and TS40(EDD).

∆Algoχ =
Algoχ −min(BS1, RBS1, GA1(EDD), TS40(EDD))

Algoχ

The best results are given by the Tabu search initialized by EDD rule. The average
deviation between TS40(EDD) and the best solution is 1,16%, the average computation
time of TS40(EDD) per 108 instances is 265,31 seconds. These values are 38,20% and
241,06 seconds for BS1, 27,81% and 245,96 seconds for RBS1, 8,43% and 269,55 seconds
for GA1(EDD).
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Table 4.8: Comparison of the best BS, RBS, GA and TS algorithms

BS1 RBS1 GA1(EDD) TS40(EDD)
n×m Best Cpu(s) ∆BS1 Best Cpu(s) ∆RBS1 Best Cpu(s) ∆GA1(EDD) Best Cpu(s) ∆TS40(EDD)

50 × 10 1 0,03 34,27% 2 1,53 10,38% 2 22,00 7,54% 9 22,01 0,00%
50 × 30 0 2,38 26,47% 0 11,33 10,00% 0 67,01 8,94% 9 67,02 0%
50 × 50 0 6,03 21,77% 0 25,70 4,53% 0 112,01 4,60% 9 112,04 0,00%
150 × 10 2 13,30 30,75% 2 52,93 18,50% 2 67,02 10,93% 9 67,18 0,00%
150 × 30 0 103,57 43,41% 1 189,22 22,92% 2 202,04 6,49% 8 202,28 0,01%
150 × 50 0 295,34 33,96% 0 338,98 23,91% 0 337,05 13,00% 9 337,78 0,00%
250 × 10 2 74,68 30,18% 2 88,83 34,87% 3 112,03 5,05% 9 112,67 0,00%
250 × 30 1 481,53 38,80% 1 304,04 32,85% 3 337,05 1,89% 8 338,47 0,13%
250 × 50 0 567,28 40,19% 0 570,98 29,07% 3 562,08 1,57% 7 567,79 0,67%
350 × 10 2 123,37 34,85% 2 124,11 37,63% 2 157,09 17,76% 9 159,35 0,00%
350 × 30 1 426,43 39,37% 1 427,25 32,98% 2 427,13 4,18% 8 476,19 11,11%
350 × 50 0 800,00 43,41% 0 816,58 35,41% 2 787,09 3,19% 8 793,20 0,38%

9 241,06 38,20% 13 245,96 27,81% 21 269,55 8,43% 101 265,31 1,16%
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4.5 Conclusion of chapter 4

In this chapter, we have proposed two greedy algorithms (NEH and EDD), a Beam
search, a Recovering beam search, a Genetic algorithm and a Tabu search algorithm for
solving the problem. We also proposed the neighborhood operators. The algorithms
are tested and evaluated from 108 benchmark instances of [Vallada et al., 2008]. Many
parameters for each method have been tested. The results obtained by the proposed
algorithms show that TS is the method that performs the best. The algorithms initiated
by EDD heuristic are always better than the algorithms initiated by EN or NEH. We also
showed that the genetic algorithm is a good metaheuristic for the problem.
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Chapter 5

Matheuristic algorithms

In this chapter, we propose several matheuristic methods, based on a resolution of a
partial problem by using an MILP solver (see section 3.1).
Notice that these methods can be used with any initial solution. Several versions of these
algorithms have been derived, depending on how the initial sequence is obtained. In these
methods, the solver for the MILP model is called iteratively.

5.1 General framework “AXB”

We consider a sequence S = AXB, where A, X and B are three partial subsequences.
An index denoted by R and a size window denoted by H make the separation between A,
X and B: the sequence of jobs from position 1 to position R − 1 constitute sequence A,
the sequence of jobs from position R + H to the end constitute sequence B. These two
subsequences are supposed to be unchanged. The sequence of jobs between position R
and position R +H − 1 constitute sequence X and this sequence is re-optimized, leading
to subsequence X ′ [Ta et al., 2014b].

The sequence S′ = AX ′B is a new sequence, hopefully better than S, and an iteration
process is performed for other values of R, up to n −H. When all the values for R have
been tested, a neighborhood (based on swaps of jobs for example) is applied to sequence
S, in order to modify and possibly improve this solution, and the procedure iterates from
R = 1, until the stopping criterion is reached. The stopping criterion is a time limit called
TimeLimMH. This process is illustrated in Fig. 5.1 and the general algorithm of the
method is given in Algo. 11.

In Algo. 11 and Algo. 12, S[k] denotes the job of S in position k. If an improvement
is found at a given iteration for the jobs in positions [R,R + H − 1], then the positions
considered for the next iteration are in the interval [R+H,R+ 2H−1], if R+ 2H−1 ≤ n
(i.e. (R− 1) +H ≤ n−H). Otherwise, the positions considered for the next iteration are
in the interval [R+ 1, R+H].

In Algo. 12, pairs of jobs are swapped if the difference between the positions of the
two jobs does not exceed n/2. If a swap improves the solution, the current sequence is
updated and swaps continue.
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Figure 5.1: Illustration of the general framework of the matheuristic algorithm

Algorithm 11 The general Matheuristic algorithm

1: Input: S = initial solution
2: improved = true
3: while (CPU ≤ TimeLimMH) and (improved = true) do
4: improved = false; R = 0
5: while R ≤ n−H do
6: A = (S[1], S[2], ..., S[R−1]); X = (S[R], S[R+1], ..., S[R+H−1])
7: B = (S[R+H], S[R+H+1], ..., S[n])
8: X ′ = re-optimization of X
9: S′ = AX ′B

10: if (
∑
Tj(S

′) <
∑
Tj(S)) then

11: improved = true; S = S′

12: if (R+H ≤ n−H) then
13: R = R+H − 1
14: end if
15: end if
16: R = R+ 1
17: end while
18: S′ = Swap(S)
19: if (

∑
Tj(S

′) <
∑
Tj(S)) then

20: improved = true; S = S′

21: end if
22: end while
23: return(S)

Notice that this method can be used with any initial solution. Several versions of this
algorithm are derived, depending on how sequence X ′ is obtained. The solver for the
MILP model is called iteratively.

In [Della Croce et al., 2011], a similar method is proposed for the F2||
∑
Cj problem,
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Algorithm 12 Swap (S)

1: Input: S = initial solution
2: for i = 1 to n− 1 do
3: j = i+ 1
4: while (j ≤ n) and (j − i ≤ n/2) do
5: S′ = (S[1], ..., S[i−1], S[j], S[i+1], ..., S[j−1], S[i], S[j+1], ...S[n])
6: if (

∑
Tj(S

′) <
∑
Tj(S)) then

7: S = S′

8: end if
9: j = j + 1

10: end while
11: end for
12: return(S)

where the initial solution is given by a Recovering Beam Search algorithm, a different
method is used for fixing the parameters of the MILP, but without any Swap procedure.

5.2 Algorithms based on the general “AXB” framework

In this section, several versions of this general framework are implemented, leading to
five different versions of the matheuristic.

5.2.1 Matheuristic algorithm MHXB(S)

The simplest way to re-optimize S in MH(S) is to introduce the following constraints
into the MILP model:

xS[k],k = 1, ∀k ∈ {1, .., R− 1} ∪ {R+H, .., n} (5.1)

These n − H constraints ensure that sequences A and B will not be changed in S′

[Ta et al., 2014b]. However, because sequence A is known, there is no need to give to the
solver a complete MILP model with n2 binary variables. Therefore, in order to reduce
the size of the MILP, we compute the completion times of the last job of sequence A on
each machine and we only re-optimize XB, within an MILP model with only H2 binary
variables. This reduction is interesting for large values of R. Similarly as MHAXB(S),
when all the values for R have been tested, a neighborhood is applied to sequence S, in
order to modify and possibly improve this solution, and the procedure iterates from R = 1,
until the stopping criterion is reached. We denote by CAi the completion time of the last
job of sequence A on machine Mi and by

∑
Tj(A) the total tardiness of the jobs in A.

New constraints are added to the model related to the CAi. We only indicate here these
new constraints. The rest of the model is unchanged, except for the definition of indices:
the problem which is solved is smaller than before and only the n−R+ 1 jobs which are
not in A are sequenced from position 1 (i.e. R) to position n − R + 1 (i.e. n). Notice
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that the indices in the expression of the constraints (5.2) and (5.3) refer to the complete
sequence S.

C1,R = CA1 +
n∑
j=1

p1,jxj,R (5.2)

Ci,R ≥ CAi +
n∑
j=1

pi,jxj,R, ∀i ∈ {2, ...,m} (5.3)

Remember that Ci,R is the completion time on machine Mi of the job in position R
in S, i.e. of the first job of XB. If we denote by

∑
Tj(XB

∗) the value of the optimal
solution of this model, the value of S′ is given by:∑

Tj(S
′) =

∑
Tj(A) +

∑
Tj(XB

∗)

This process of the MHXB(S) is illustrated in Fig. 5.2
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Figure 5.2: Illustration of the MHXB(S) algorithm

5.2.2 Matheuristic algorithm MHXB1(S)

This is a method similar to MHXB(S), but a neighborhood operator (among SWAP,
EFSR, EBSR and Inversion) is applied to the sequence of jobs from position 1 to position
R − 1 (i.e. sequence A), leading to a new sequence A′. The objective function of the
neighborhood operator is such that sequence A′ will not penalize too much sequence X,
i.e. it is a linear combination of the total tardiness of the jobs of A′ and the makespan of
A′. The expression of this objective function to minimize is:

Z=α

(∑
i∈A′

Ti

)
+ (1− α)Cm,R−1 (5.4)
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where Cm,R−1 denotes the completion time on machine Mm of the job in position R−1,
i.e. the last job of sequence A′.

This process of the MHXB1(S) is illustrated in Fig. 5.3.
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Figure 5.3: Illustration of the MHXB1 algorithm

The total tardiness of A′ and the completion time of the last job of A′ on each machine
are computed and denoted by CAi, the constraints with CAi are introduced in (5.2) and
(5.3) as for algorithm MHXB(S). The value of S′ is given by:∑

Tj(S
′) =

∑
Tj(A

′) +
∑

Tj(XB
∗)

where
∑
Tj(XB

∗) is computed as in Section 5.2.1.

5.2.3 Matheuristic algorithm MHX(S)

In order to continue reducing the size of the problem to be optimized by the solver,
we limit now the problem exactly to the optimization of sequence X [Ta et al., 2014b]. Of
course, minimizing the total tardiness of the jobs of X (sequenced after the jobs of A) and
after that sequencing the jobs of B leads to a worse solution than minimizing the total
tardiness of the jobs of XB, even if B is fixed. Therefore, we introduce another criterion
in the objective function for the optimization of X. More precisely, in order to finish the
jobs of X not too late, which could be penalizing for B, we change the objective function
for a linear combination of the total tardiness of the jobs of X and the makespan of X
(exactly as before for A′, but here in the MILP formulation). Therefore, the objective
function is equal to:

Minimize α

(
R+H−1∑
k=R

Tk

)
+ (1− α)Cm,R+H−1 (5.5)

91



5.2. ALGORITHMS BASED ON THE GENERAL “AXB” FRAMEWORK

where Cm,R+H−1 denotes the completion time on machine Mm of the job in position
R+H − 1, i.e. the last job of sequence X.

This process of the the MHX(S) is illustrated in Fig. 5.4.
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Figure 5.4: Illustration of the MHX(S) algorithm

First, the total tardiness of A and the completion time of the last job of A on each
machine are computed and the constraints with CAi are introduced in the model (same
way as in MHXB(S)). Then, the optimization of X is done by the solver, and a sequence
X ′ = X∗ is obtained. Similarly as MHAXB(S), the sequence S′ = AX ′B is a new
sequence, hopefully better than S, and an iteration process is performed for other values
of R, up to n−H. When all the values for R have been tested, a neighborhood is applied
to sequence S, in order to modify and possibly improve this solution, and the procedure
iterates from R = 1, until the stopping criterion is reached. The completion times of the
last job of X ′ on each machine are denoted by CXi. Then, sequence B is scheduled after
X, taking the CXi values into account. Finally, the value of S′ is given by:∑

Tj(S
′) =

∑
Tj(A) +

∑
Tj(X

∗) +
∑

Tj(B)

5.2.4 Matheuristic algorithm MHX1(S)

We propose another matheuristic method of type MHX called MHX1(S), based also
on a partial resolution of the MILP (see Section 3.1). Similarly as in Section 5.1, given
is a sequence S = AXB, an index R and a size window H. Firstly, neighborhood opera-
tors (among SWAP, EFSR, EBSR and Inversion) are applied to the sequence A and the
obtained sequence is called A′. Secondly, the sequence X is re-optimized, giving sequence
X ′. Finally, neighborhood operators are also applied to sequence B, giving sequence B′.
The sequence S′ = A′X ′B′ is a new sequence, hopefully better than S, and the process
iterates for other values of R, up to n −H. This process is performed until the stopping
criterion is reached, i.e. a time limit called TimeLimMH. This matheuristic algorithm is
illustrated in Fig. 5.5 and the algorithm is given in Algo. 13.
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Figure 5.5: Illustration of the MHX1(S) algorithm

Algorithm 13 The MHX1(S) algorithm

1: Input: S = initial solution
2: improved = true
3: while (CPU ≤ TimeLimMH) and (improved = true) do
4: improved = false ; R = 0
5: while R ≤ n−H do
6: A = (S[1], S[2], ..., S[R−1])
7: A′ = Neighborhood operator(A)
8: X = (S[R], S[R+1], ..., S[R+H−1])
9: X ′ = re-optimization of X

10: B = (S[R+H], S[R+H+1], ..., S[n])
11: B′ = Neighborhood operator(B)
12: S′ = A′X ′B′

13: if (
∑
Tj(S

′) <
∑
Tj(S)) then

14: improved = true ; S = S′

15: if (R+H ≤ n−H) then
16: R = R+H − 1
17: end if
18: end if
19: R = R+ 1
20: end while
21: end while
22: return(S)

The objective function for finding the best possible subsequence A′ is a linear combi-
nation of the total tardiness of the jobs of A′ and of the makespan of A′. This objective
function is equal to:
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ZA =α

(
R−1∑
i=1

Ti

)
+ (1− α)Cm,R−1 (5.6)

where Cm,R−1 denotes the completion time on machine Mm of the job in position R−1,
i.e. the last job of sequence A′.

For the same reasons, the objective function for finding the best possible subsequence
X ′ is also a linear combination of the total tardiness of the jobs of X ′ and of the makespan
of X ′. This objective function is equal to:

ZX =α

(
R+H−1∑
k=R

Tk

)
+ (1− α)Cm,R+H−1 (5.7)

where Cm,R+H−1 denotes the completion time on machine Mm of the job in position
R+H − 1, i.e. the last job of sequence X ′.

First, the total tardiness of A′ and the completion time of the last job of A′ on each
machine are computed and denoted by CAi, the constraints with CAi are introduced in
the model (same way as in MHXB(S)). Then, the optimization of X is done by the solver,
and a sequence X ′ = X∗ is obtained. The completion times of the last job of X ′ on each
machine are denoted by CXi. Then, sequence B′ is scheduled after X, taking the CXi

values into account with the following objective function:

ZB =
n∑

k=R+H

Tk

Finally, the value of S′ is given by:∑
Tj(S

′) =
∑

Tj(A
′) +

∑
Tj(X

∗) +
∑

Tj(B
′)

5.2.5 Matheuristic algorithm MHX2(S)

Another matheuristic method of type MHX(S) is called MHX2(S). Similarly as in
Section 5.1, the sequence A and the sequence B are unchanged. The sequence X is
re-optimized, giving sequence X ′. The sequence S′ = AX ′B is a new sequence. Then, the
neighborhood operators (among SWAP, EBSR, EFSR, Inversion) are applied to sequence
S′, in order to modify it and possibly improve this solution. The procedure iterates from
R = 1, until the stopping criterion is reached, i.e. a time limit called TimeLimMH. The
algorithm denoted Algo. 14 is given below.

Similarly as in Section 5.2.3, the value of S′ is given by:∑
Tj(S

′)∗ =
∑

Tj(A) +
∑

Tj(X
∗) +

∑
Tj(B)
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Algorithm 14 The MHX2 algorithm

1: Input: S = initial solution
2: improved = true
3: while (CPU ≤ TimeLimMH) and (improved = true) do
4: improved = false ; R = 0
5: while R ≤ n−H do
6: A = (S[1], S[2], ..., S[R−1])
7: X = (S[R], S[R+1], ..., S[R+H−1])
8: X ′ = re-optimization of X
9: B = (S[R+H], S[R+H+1], ..., S[n])

10: S′ = AX ′B
11: if (

∑
Tj(S

′)∗ <
∑
Tj(S)) then

12: improved = true ; S = S′

13: end if
14: S′= Neighborhood operator(S)
15: Compute (

∑
Tj(S

′))
16: if (

∑
Tj(S

′) <
∑
Tj(S)) then

17: improved = true ; S = S′

18: if (R+H ≤ n−H) then
19: R = R+H − 1
20: end if
21: end if
22: R = R+ 1
23: end while
24: end while
25: return(S)

5.3 Matheuristic algorithm with limited positions

With this method denoted by MHPOS(S) [Ta et al., 2014b], the hypothesis is that the
positions of jobs in S are not that bad, and only few changes in the subsequence X are
sufficient to improve the solution.

We assume that a job in a position k ∈ {R, ..., R+H − 1} may only be scheduled at a
position between k − δ and k + δ.

The following constraints are added to the MILP:

k+δ∑
`=R

xS[k],` = 1, ∀k ∈ {R,R+ δ − 1} (5.8)

k+δ∑
`=k−δ

xS[k],` = 1, ∀k ∈ {R+ δ,R+H − 1− δ} (5.9)

R+H−1∑
`=k−δ

xS[k],` = 1, ∀k ∈ {R+H − 2− δ,R+H − 1} (5.10)
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The process is the same as in MHXB(S), i.e. sequence XB is re-optimized, with this
limitation for the possible positions of each job. The idea is that with this limitation in
the position changes, it will be possible to increase the size of H. Finally, the value of S′

is given by: ∑
Tj(S

′) =
∑

Tj(A) +
∑

Tj(XB
∗)

The process is illustrated in Fig. 5.6.
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Figure 5.6: Illustration of the MHPOS(S) algorithm

5.4 Computational experiments

These algorithms have been tested by using 108 benchmark instances proposed in
[Vallada et al., 2008]. Nine instances of these benchmark instances are used for each com-
bination of n and m, with n ∈ {50, 150, 250, 350} and m ∈ {10, 30, 50}.

The matheuristic algorithms have been tested with several initial solutions and are
compared in terms of quality.

The time limit of the matheuristic algorithms has been fixed to TimeLimMH =
(200 + n + m) seconds. After some preliminary experiments, the size window has been
fixed to H = 6, the coefficient α in the linear combination for MHXB(S), MHXB1(S),
MHX(S), MHX1(S) and MHX2(S) has been fixed to α = 0.5, and the coefficient δ in
MHPOS(S) has been fixed to δ = 3. The solver that has been used for solving the MILP
model is CPLEX v12.2.

5.4.1 Comparison of the matheuristic algorithms

Comparison of the matheuristic algorithms with EDD as an initial solution
(denoted by MH(EDD))

In Tables 5.1, 5.2 and 5.3, column ‘Best’ for ‘MHX1(EDD)’ indicates the number of
times the method MHX1(EDD) outperforms the other methods, column Cpu(s) indicates
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the average computation time of MHX1(EDD) per nine instances.

Column ‘∆p(EDD)’ (p(EDD) ∈ {MHX1(EDD),MHX2(EDD),MHXB(EDD),
MHXB1(EDD),MHPOS(EDD),MHX(EDD)}) indicates the average deviation between
p(EDD) and the best matheuristic betweenMHX1(EDD), MHX2(EDD), MHXB(EDD),
MHXB1(EDD), MHPOS(EDD) and MHX(EDD) .

∆p(EDD) =
p(EDD)−min(MHall(EDD))

p(EDD)

with MHall(EDD) is all methods (MHXB(EDD), MHXB1(EDD), MHPOS(EDD),
MHX(EDD), MHX1(EDD), MHX2(EDD))

In Tables 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, column ‘Bestall’ for ‘MHall(EDD)’ or ‘MHall(EN)’
indicates the number of times the method ‘MHall(EDD)’ or ‘MHall(EN)’ outperforms
the other matheuristic methods, where all ∈ {XB,XB1, POS,X,X1, X2}. We can see
that MHX1(EDD) is the best method in terms of number of best solutions returned.

Table 5.1: Comparison of matheuristic algorithms by EDD initial solution (1)
MHX1(EDD) MHX2(EDD)

n×m Bestall Best Cpu(s) ∆X1(EDD) Bestall Best Cpu(s) ∆X2(EDD)

50 × 10 3 4 260,11 13,34% 2 2 260,09 7,03%
50 × 30 1 1 280,17 10,06% 1 1 280,15 10,89%
50 × 50 4 4 300,40 0,48% 1 2 300,39 2,87%
150 × 10 2 5 360,21 11,82% 2 3 360,04 5,96%
150 × 30 5 7 380,61 3,96% 1 1 380,03 6,46%
150 × 50 4 7 402,81 3,99% 1 1 400,21 5,07%
250 × 10 5 9 460,73 0,00% 3 3 460,02 2,87%
250 × 30 6 8 483,64 11,11% 1 1 480,05 17,25%
250 × 50 8 8 503,42 0,08% 0 0 500,11 17,00%
350 × 10 3 6 562,58 11,37% 4 4 560,01 1,28%
350 × 30 6 6 591,63 12,20% 1 1 580,08 16,11%
350 × 50 0 0 606,78 27,18% 3 6 600,04 3,46%

47 65 428,32 8,80% 20 25 425,82 8,02%

In Tables 5.1, 5.2 and 5.3, we can also see that the MHX1(EDD) matheuristic algo-
rithm (initialized by EDD sequence) leads to the best results in terms of number of best so-
lutions returned. On average, the deviation between the solutions returned by this method
and the best solutions is 8,80%. This value is around 5,84% for MHX(EDD), 8,02%
for MHX2(EDD), 23,46% for MHXB(EDD), 36,35% for MHX1(EDD) and 32,63% for
MHPOS(EDD).

Comparison of the matheuristic algorithms initialized by EN

We compared to the matheuristic algorithms are initialized by EN that is the best
solution among EDD and NEH (denoted by MH(EN))
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Table 5.2: Comparison of matheuristic algorithms by EDD initial solution (2)
MHXB(EDD) MHXB1(EDD)

n×m Bestall Best Cpu(s) ∆XB(EDD) Bestall Best Cpu(s) ∆XB1(EDD)

50 × 10 2 3 260,23 13,95% 1 1 260,25 21,08%
50 × 30 2 2 281,08 8,94% 0 0 281,24 17,62%
50 × 50 1 1 304,26 4,36% 0 0 301,80 11,62%
150 × 10 2 3 360,41 4,79% 1 1 360,61 42,48%
150 × 30 1 1 384,19 13,95% 0 0 383,76 41,18%
150 × 50 0 0 418,15 16,81% 0 0 415,52 28,73%
250 × 10 3 3 462,14 10,86% 1 1 462,26 50,74%
250 × 30 1 1 487,57 35,18% 1 1 485,83 42,18%
250 × 50 0 0 524,79 44,13% 0 0 523,70 44,49%
350 × 10 2 2 562,87 37,89% 2 2 565,43 44,82%
350 × 30 1 1 594,79 45,02% 1 1 598,22 45,32%
350 × 50 0 0 636,69 45,96% 0 0 668,86 45,99%

15 17 439,76 23,46% 7 8 437,99 36,35%

Table 5.3: Comparison of matheuristic algorithms by EDD initial solution (3)
MHPOS(EDD) MHX(EDD)

n×m Bestall Best Cpu(s) ∆POS(EDD) Bestall Best Cpu(s) ∆X(EDD)

50 × 10 2 2 231,34 18,02% 2 3 266,11 2,32%
50 × 30 1 1 249,76 5,02% 3 4 280,23 8,69%
50 × 50 0 0 302,45 6,32% 2 2 300,56 1,78%
150 × 10 2 2 361,25 11,21% 3 3 260,30 5,11%
150 × 30 0 0 385,56 38,44% 3 3 380,18 2,87%
150 × 50 0 0 406,76 35,96% 0 1 400,56 5,52%
250 × 10 1 1 462,95 48,76% 3 3 461,88 3,03%
250 × 30 1 1 489,21 44,69% 2 2 486,62 5,75%
250 × 50 0 0 520,97 45,42% 1 1 504,20 15,88%
350 × 10 2 2 564,95 45,59% 3 3 588,03 4,26%
350 × 30 1 1 594,84 45,72% 4 4 608,87 3,63%
350 × 50 0 0 665,74 46,43% 4 4 636,10 1,39%

8 9 441,35 32,63% 30 33 434,20 5,84%

In Tables 5.4, 5.5 and 5.6, column ‘Best’ for ‘MHXB(EN)’ indicates the number of
times the method MHXB(EN) outperforms the other methods, column Cpu(s) indicates
the average computation time of MHXB(EN) per nine instances.

Column ‘∆p(EN)’ (p(EN) ∈ {MHXB(EN),MHXB1(EN),MHPOS(EN),MHX(EN),
MHX1(EN),MHX2(EN)}) indicates the average deviation between p(EN) and the best
matheuristic betweenMHXB(EN), MHXB1(EN), MHX(EN), MHX1(EN), MHX2(EN)
and MHPOS(EN).
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Table 5.4: Comparison of matheuristic algorithms by EN initial solution (1)
MHX1(EN) MHX2(EN)

n×m Bestall Best Cpu(s) ∆ENX1
Bestall Best Cpu(s) ∆X2(EN)

50 × 10 2 4 260,08 14,97% 2 2 260,12 6,68%
50 × 30 1 6 280,30 0,23% 0 0 280,31 4,17%
50 × 50 1 5 300,39 0,62% 0 2 300,39 2,04%
150 × 10 6 8 360,43 11,11% 2 2 360,60 7,82%
150 × 30 3 8 381,59 2,78% 1 2 380,06 6,70%
150 × 50 4 8 436,19 5,29% 1 1 400,07 6,21%
250 × 10 7 8 461,35 0,14% 3 4 460,20 4,13%
250 × 30 3 7 482,98 3,81% 1 2 480,01 5,45%
250 × 50 1 4 513,17 3,03% 0 3 500,02 12,32%
350 × 10 5 8 562,96 11,11% 3 3 560,01 3,92%
350 × 30 1 1 587,08 23,35% 1 4 580,02 1,30%
350 × 50 0 0 609,21 26,90% 3 3 600,02 3,88%

34 67 432,09 8,61% 17 26 425,81 5,38%

Table 5.5: Comparison of matheuristic algorithms by EN initial solution (2)
MHXB(EN) MHXB1(EN)

n×m Bestall Best Cpu(s) ∆XB(EN) Bestall Best Cpu(s) ∆XB1(EN)

50 × 10 4 4 260,11 1,92% 1 1 260,16 22,51%
50 × 30 1 2 280,56 5,60% 0 0 281,19 6,72%
50 × 50 0 1 300,95 2,34% 0 1 301,72 2,98%
150 × 10 2 2 360,56 6,37% 1 1 360,79 42,38%
150 × 30 1 1 382,50 11,42% 0 0 385,05 32,61%
150 × 50 0 0 405,06 16,38% 0 0 410,04 20,40%
250 × 10 3 3 462,49 12,05% 1 1 461,80 49,99%
250 × 30 1 1 491,34 33,66% 1 1 489,47 33,73%
250 × 50 0 0 533,71 26,80% 0 0 529,10 26,72%
350 × 10 2 2 564,19 37,24% 2 2 565,27 42,79%
350 × 30 1 1 602,85 31,97% 1 1 622,82 31,99%
350 × 50 0 0 655,23 33,00% 0 0 658,30 33,01%

15 17 441,85 18,26% 7 8 439,37 28,82%

∆p(EN) =
p(EN)−min(MHall(EN)

p(EN)

withMHall(EN) is all methods (MHXB(EN), MHXB1(EN), MHPOS(EN), MHX(EN),
MHX1(EN), MHX2(EN))).

In Tables 5.6, 5.5 and 5.6, we can also see that the MHX1(EN) matheuristic algorithm
leads to the best results with a number of best solutions equal to 67. On average, the devi-
ation between the solutions returned by this method and the best solutions is 8,61%. This
value is around 5,82% for MHX(EN), 5,38% for MHX2(EN), 18,26% for MHXB(EN),
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Table 5.6: Comparison of matheuristic algorithms by EN initial solution(3)
MHPOS(EN) MHX(EN)

n×m Bestall Best Cpu(s) ∆POS(EN) Bestall Best Cpu(s) ∆X(EN)

50 × 10 2 2 261,84 16,37% 2 3 260,01 6,23%
50 × 30 0 0 286,99 5,80% 0 1 280,02 3,94%
50 × 50 0 1 314,80 4,16% 0 1 300,03 2,97%
150 × 10 2 2 360,99 12,48% 2 2 360,53 6,68%
150 × 30 0 0 388,90 30,12% 1 1 380,59 9,28%
150 × 50 0 0 502,67 22,69% 0 0 401,20 9,16%
250 × 10 1 1 464,29 45,43% 3 3 463,30 3,04%
250 × 30 1 1 509,80 33,71% 1 2 483,60 5,34%
250 × 50 0 0 617,49 26,45% 1 3 506,20 1,98%
350 × 10 2 2 567,73 42,88% 2 2 574,53 13,29%
350 × 30 1 1 622,75 32,04% 1 6 595,83 7,78%
350 × 50 0‘ 0 840,77 32,84% 2 7 618,95 0,09%

9 10 475,61 31,20% 15 31 430,79 5,82%

28,82% for MHX1(EN) and 31,20% for MHPOS(EN).
Conclution: The results clearly show the domination of MHX1 in most of the cases. We
can also see that the MHX , MHX1 , MHX2 are better than the MHXB, MHXB1 , MHPOS

algorithms. The main reason is due to the computation time required by CPLEX for solv-
ing each MILP. For MHXB and MHXB1 , CPLEX takes time for loading the problem and
solving it, as soon as the problem size increases, which limits the number of neighbors ex-
plored. The fact that some variables are already decided clearly helps, but is not sufficient
for making this method competitive. The advantage of MHX , MHX1 , MHX2 are that the
problem given to CPLEX is very small and very quickly solved. Therefore, the algorithm
can perform several times the loop (starting several times with R = 1), before reaching
quickly a better solution. The method MHPOS is not able to find good solutions before
the end of the algorithm for the same reasons. Clearly, the quality of the matheuristic
is strongly related to its ability of solving quickly to optimality a big number of partial
sequences.

Comparison of the MHX1(EDD) and MHX1(EN) algorithm

In Table 5.7, column ‘Best’ for MHX1(EDD) indicates the number of times this
method strictly outperforms method MHX1(EN), column Cpu(s) indicates the average
computation time of MHX1(EDD) per nine instances. Column ‘∆EX1

’ indicates the av-
erage deviation between MHX1(EDD) and MHX1(EN).

∆X1(EDD) =
MHX1(EDD)−MHX1(EN)

MHX1(EDD)

Column ‘Best’ for ‘MHX1(EN)’ indicates the number of times the methodMHX1(EN)
strictly outperforms method MHX1(EN), column Cpu(s) indicates the average computa-
tion time of MHX1(EN) per nine instances. Column ‘∆X1(EN)’ indicates the average
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deviation between MHX1(EN) and MHX1(E).

∆X1(EN) =
MHX1(EN)−MHX1(E)

MHX1(EN)

Column ‘Best’ for ‘EDD’ indicates the number of times the EDD rule outperforms
the best solution among EDD and NEH rule (denote by EN). Column ‘Best’ for ‘EN ’
indicates the number of times the EN outperforms the EDD.

Table 5.7: Comparison of the MHX1(EDD) and MHX1(EN) algorithm

EDD EN MHX1(EDD) MHX1(EN)
n×m Best Best Best Cpu(s) ∆X1(EDD) Best Cpu(s) ∆X1(EN)

50 × 10 2 9 7 260,11 -1,48% 4 260,08 1,37%
50 × 30 0 9 3 280,17 1,23% 6 280,30 -1,35%
50 × 50 0 9 8 300,40 -1,97% 1 300,39 1,89%
150 × 10 3 9 3 360,21 3,00% 8 360,43 -3,46%
150 × 30 2 9 7 380,61 -2,78% 3 381,59 2,51%
50 × 50 1 9 5 402,81 -2,98% 4 436,49 2,23%
250 × 10 4 9 5 460,73 0,58% 7 461,35 -0,64%
250 × 30 2 9 7 483,64 -32,45% 3 482,98 11,36%
250 × 50 2 9 9 503,42 -11,68% 1 513,17 9,06%
350 × 10 4 9 4 562,58 10,83% 7 562,96 -45,02%
350 × 30 2 9 9 591,63 -88,65% 1 587,08 27,82%
350 × 50 2 9 5 606,78 -18,45% 4 609,21 9,21%

24 108 72 432,76 -12,07% 49 436,34 1,25%

We can see that it is clear that MHX1(EDD) outperforms MHX1(EN), although EN
sequence is obviously better than EDD sequence. The average deviation returned by this
method and MHX1(EDD) method is -12,07% and 1,25% for MHX1(EN).

5.4.2 Comparison of the MHX1(EDD) and GA1(EDD) algorithms

The best proposed matheuristic algorithms (MHX1(EDD)) is now compared to the
best proposed genetic algorithm (GA1(EDD)), both algorithms are initialized by EDD
rule and the limited computation time is fixed to (200 + n + m) seconds. In Table 5.8,
column ‘Best’ for ‘MHX1(EDD)’ indicates the number of times the method MHX1(EDD)
outperforms method GA1(EDD). Column ‘∆X1(EDD)’ indicates the average deviation
between MHX1(EDD) and GA1(EDD).

∆X1(EDD) =
MHX1(EDD)−GA1(EDD)

MHX1(EDD)

Column ‘Best’ for ‘GA1(EDD)’ indicates the number of times the method GA1(EDD)
outperforms method MHX1(EDD), column ‘∆GA1(EDD)’ indicates the average deviation
between GA1(EDD) and MHX1(EDD).
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∆GA1(EDD) =
GAEDD1 −MHX1(EDD)

GA1(EDD)

Table 5.8: Comparison of the best MHX1(EDD) and GA1(EDD) algorithm

MHX1(EDD) GA1(EDD)
n×m Best Cpu(s) ∆X1(EDD) Best Cpu(s) ∆GA1(EDD)

50 × 10 5 260,11 11,91% 5 260,01 -1,30%
50 × 30 5 280,17 0,06% 4 280,01 -0,20%
50 × 50 6 300,40 -0,62% 3 300,02 0,59%
150 × 10 7 360,21 6,30% 3 360,02 4,06%
150 × 30 7 380,61 -1,21% 3 380,02 1,14%
150 × 50 6 402,81 1,35% 3 400,05 -3,67%
250 × 10 9 460,73 -3,28% 3 460,03 3,08%
250 × 30 8 483,64 8,07% 2 480,05 2,90%
250 × 50 9 503,42 -3,59% 1 500,07 3,43%
350 × 10 7 562,58 7,39% 4 560,08 3,46%
350 × 30 6 591,63 7,42% 4 580,10 3,31%
350 × 50 0 606,78 25,36% 9 600,10 -22,68%

Sum/Avg 75 432,76 4,93% 44 430,05 -0,49%

The results clearly show that the matheuristic outperforms the genetic algorithm in
most of the cases. However, the performance of the genetic algorithm is better than the
performance of the matheuristic for (n×m) = (350× 50), We also notice that for n = 50
jobs, the two methods are equivalent.

5.4.3 Comparison of the TSEDD, MHX1(EDD) and matheuristic algo-
rithm is initialized by TSEDD (MHTS(EDD))

Matheuristic algorithm is initialized by TSEDD denoted MHTS(EDD) that has limit
time TimeLimMHTS(EDD) = TimeLimTS + 300 seconds. The time limit of Tabu
search has been fixed to TimeLimTS = (n(m/2)× 90)/1000 seconds.

In Table 5.9, column ‘BestX1 ’ for ‘TSEDD’ indicates the number of times the method
TSEDD outperforms method MHX1(EDD), column Cpu(s) indicates the average compu-
tation time of TSEDD per nine instances. Column ‘BestTS ’ for ‘MHX1(EDD)’ indicates
the number of times the method MHX1(EDD) outperforms method TSEDD, column
Cpu(s) indicates the average computation time of MHX1(EDD) per nine instances. Col-
umn ‘∆EDD’ indicates the average deviation between EDD and MHX1(EDD).

∆EDD =
EDD −MHX1(EDD)

EDD

Column ‘Best’ for ‘MHTS(EDD)’ indicates the number of times the method
MHTS(EDD) is strictly better than TSEDD and MHX1(EDD), column Cpu(s) indicates
the average computation time of MHTS(EDD) per nine instances. Column ‘∆TS(EDD)’
indicates the average deviation between TSEDD and MHTS(EDD).
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∆TS(EDD) =
TSEDD −MHTS(EDD)

TSEDD

Table 5.9: Comparison of TS and matheuristic algorithms MHX1

TSEDD MHX1(EDD) MHTS(EDD)
n×m BestX1 Cpu(s) BestTS Cpu(s) ∆EDD Best Cpu(s) ∆TSEDD

50 × 10 8 22,02 0 260,11 57,59% 3 282,08 0,04%
50 × 30 9 67,03 0 280,17 36,32% 2 347,27 0,16%
50 × 50 9 112,04 0 300,40 29,61% 5 412,46 0,05%
150 × 10 8 67,21 0 360,21 57,69% 3 427,25 0,28%
150 × 30 4 202,53 4 380,61 54,41% 3 583,38 0,20%
150 × 50 5 338,25 4 402,81 41,85% 3 738,57 1,09%
250 × 10 4 112,39 2 460,73 56,14% 4 573,17 0,45%
250 × 30 2 338,99 6 483,68 47,74% 1 820,48 0,87%
250 × 50 2 566,82 6 503,42 47,35% 3 1066,03 1,62%
350 × 10 5 159,19 2 562,58 46,27% 6 719,25 0,66%
350 × 30 4 477,22 4 591,63 46,21% 1 1060,78 0,30%
350 × 50 9 797,10 0 606,78 37,40% 0 1394,75 0,00%

Total 69 265,74 28 428,32 46,55% 34 692,05

As we can see, MHX1(EDD) improves significantly the initial solution given by EDD,
with 46,55% of improvement average. Furthermore, this method has good performances for
number of jobs and machines between 150 jobs × 30 machines and 350 jobs × 30 machines,
even if the computation time is relatively important. However, for other case of jobs and
machines, the improvement of the initial solution is not sufficient in comparison with the
Tabu search and it is clear that TS algorithm has very good performances in comparison
with MHX1(EDD). Of course, the method which performs the best is MHTS(EDD).
This method quite always find a better solution than TS or MHX1(EDD). However, the
average deviation between TS and MHTS(EDD) is not that important and the compu-
tation time is greater. It seems that the TS algorithm performs well.

5.4.4 Comparison of the matheuristic algorithm is initialized by TSEDD
(denoted by MHTS(EDD)) and results of [Vallada et al., 2008]

In this section, the algorithm MHTS(EDD) is compared to the results obtained by
[Vallada et al., 2008] on 504 instances. 42 instances of these benchmark instances are used
for each combination of n and m, with n ∈ {50, 150, 250, 350} and m ∈ {10, 30, 50}.

In Table 5.10, column ‘Best MHTS(EDD) ≤ result of (Val)’ indicates the number of
times the method MHTS(EDD) is better or equal to the result of [Vallada et al., 2008].
Column ‘Best MHTS(EDD) < result of (Val)’ indicates the number of times the method
MHTS(EDD) is strictly better than the result of [Vallada et al., 2008].

The results shows the good performances of MHTS(EDD) for a number machines
equal to 10 and a number of jobs comprised between 50 jobs and 350 jobs. However,
for the other cases, the preformances of MHTS(EDD) are not sufficient in comparison
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with the result of [Vallada et al., 2008]. The reason is that for m > 10 machines, the
computation time of CPLEX is too important and the performance of the matheuristic
decreases.

Table 5.10: Comparison of MHTS(EDD) and results of [Vallada et al., 2008] (Val)
Best MHTS(EDD) ≤ Best MHTS(EDD) <

n×m Result of (Val) Result of (Val)

50× 10 11 0
50× 30 0 0
50× 50 0 0
150× 10 13 2
150× 30 5 0
150× 50 0 0
250× 10 24 10
250× 30 7 0
250× 50 5 0
350× 10 29 20
350× 30 5 1
350× 50 0 0

Sum 99 / 504 33 /504

5.5 Conclusions of chapter 5

The chapter focused on the matheuristic algorithms for solving m-machine permutation
flow shop scheduling problem, with the objective to minimize the total tardiness. We
proposed six new matheuristic algorithms that are based on the insertion of exact solution
into a neighborhood search algorithm. The solution of the Tabu search, the EDD sequence
or any other sequence can be used as an input for the matheuristic algorithms. The
results obtained show firstly the good performances of the Tabu search and then that the
matheuristic always improves significantly EDD or EN (the best solution among EDD
and NEH) sequence and improves the Tabu search result with a small relative deviation
for large instances. Secondly, MHX1(EDD) outperforms the genetic algorithm initialized
by EDD sequence plus random instances within the same computation time, in terms of
number of best solutions returned. Thirdly, MHX1(EDD) is the best algorithm of the
matheuristic proposed algorithms. Finally, the proposed algorithms initialized by EDD
rule outperform the algorithms initialed by EN, although the EN sequence is clearly better
than the EDD sequence.
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Chapter 6

Integrated flow shop scheduling
and vehicle routing problem

In this chapter, we consider a m-machine permutation flow shop scheduling problem
and vehicle routing problem (VRP) integrated [Ta et al., 2014a]. Then, we present the
resolution method based on Tabu search and the results that have been obtained. Finally,
a conclusion and some future research directions are proposed.

6.1 Problem definition

We consider that the jobs have to be delivered to the customers after their production
by using a single vehicle. The processing time of each job on each machine and the due
date of delivery for each job are known, and a matrix of travel times is given. The jobs have
to be scheduled in a m-machine flow shop environment, then batches have to be defined
(one batch corresponds to one trip of the vehicle) and a route has to be determined for
each batch, so that the total tardiness of delivery is minimized.

The vehicle routing problem consists in defining a route starting from the produc-
tion site, visiting the customers associated to the jobs in the batch, and finishing at the
production site. Each customer requiring goods is visited by the vehicle (see Figure 6.1).

The aim of this chapter is to propose an algorithm for scheduling the jobs on the
m-machines flow shop, for constituting batches of jobs and for determining the vehicle
routing for each batch, so that the total tardiness of delivery is minimized. This problem
is clearly an NP -hard problem [Lenstra and Rinnooy Kan, 1981].

Notations

The specific notations that are used in this chapter are the following:

• to each job Jj is associated a customer location number j, the location of the pro-
duction facility has an index 0,

• the delivery time between each pair of locations i and j is denoted by li,j ,
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Figure 6.1: Illustration of the integrated production scheduling and vehicle routing prob-
lems

• the number of vehicles is equal to 1.

6.2 Tabu search algorithm

We only give in this section the elements of the method that are related to the problem
that we consider. The basic notions about Tabu search have already been presented in
Chapter 1.

6.2.1 Coding of a solution

We use an array of 3n elements to represent a complete solution. The first n elements
represent the sequence of jobs (i.e. the schedule), the next 2n elements give for each trip
the number of jobs in the trip and the list of jobs (the routing of these jobs is implicitely
the order of the jobs in this list). In the following, the first part of the coding of a solution
S (first n elements) is denoted by So and the second part (2n elements) is denoted by ST .
The second part is decomposed into several trips. Each trip λ of ST is denoted by STλ and
is composed by the number of visits kλ and the list of visits (STλ[1], ..., S

T
λ[kλ]

). The coding
is illustrated in Fig. 6.2.

Example: In the example presented in Fig. 6.3, the schedule is {J1, J5, J2, J6, J4, J3, J7},
the number jobs in each trip is (2, 2, 3, 0, 0, 0, 0), i.e. two jobs in the first two trips and
three jobs in the third trip, the remaining trips are empty.
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Figure 6.2: Illustration of the coding of a solution and notations

sequence

� -n = 7 -� 2× n = 14

trips

6

2 4

7

3

5

1

1 25 6 4 3 7

1 25 6 4 3 7

1 2 345 6 7 2 5 1 2 6 2 3 4 3 7 0000

DEPOT

Y

>

w

�

1

W

�

j

9

6

Trip 1

Trip 2
Trip 3

Figure 6.3: Example of the coding of a solution

6.2.2 Initial solution

EDD algorithm is used for giving an initial solution for the scheduling problem. For
the trips, each trip contains only one job. The customers are visited in the same order as
in the sequence.

Example: An example of an initial solution is given in Fig. 6.4:
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sequence

� -n = 7 -� 2× n = 14

trips

1 2 34 7 51 62 4 3 71 1 1 1 1 1 165

Figure 6.4: Example of initial solution

6.2.3 Neighborhood definitions

We assume that S = So//ST is the current complete solution with sequence So and
trips ST , where:

• So = So1/S
o
[i]/S

o
2/S

o
[j]/S

o
3 with So[i] and So[j] the jobs in positions i and j (i < j) in So

and So1 , So2 and So3 three partial sequences.

• ST = k1, S
T
1 / . . . /kλ−1, S

T
λ−1/kλ, S

T
λ /kλ+1, S

T
λ+1/ . . . /kn, S

T
n with kλ the number of

jobs in trip λ, STλ is the sequence of jobs in trip λ, ∀λ ∈ {1, 2, ..., n}.

If kλ = 0 then STλ is empty. Notice also that
∑n

λ=1 kλ = n.

Neighborhood based on the sequence of jobs

We use SWAP o operator for creating the neighbors of sequence So. This operator is
the same as the one described in chapter 4 (see Sections 4.2.2 and 4.3.1).

• SWAP o: A neighbor of S is created by interchanging the jobs in position i and j
in sequence So. The corresponding jobs are also swapped in ST . See Fig. 6.5 for an
illustration of this operator.

sequence

� -n = 7 -� 2× n = 14

trips

1 2 34 7 52 6 2 4 3 71 3 0

? ?

65

SWAP o

2 0 0 0

� -n = 7 -� 2× n = 14

1 2 34 7 52 62 4 3 71 3 065 2 0 0 0

?
SWAP o

?

Figure 6.5: Illustration of SWAP o operator

Neighborhood based on a single trip

We use SWAP T , EBSRT , ESFRT and InversionT operators for creating the neigh-
bors of a trip STλ . These operators are the same as those described in Chapter 4 (see
Sections 4.2.2 and 4.3.1).
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Given a sequence of visits STλ of trip λ, two random positions i and j in STλ (i < j and
j ≤ kλ): STλ = STλ1, S

T
λ[i], S

T
λ2, S

T
λ[j], S

T
λ3.

• SWAP T : A neighbor of STλ is created by interchanging the jobs in position i and j,
leading to sequence ST ′λ = STλ1, S

T
λ[j], S

T
λ2, S

T
λ[i], S

T
λ3. See Fig. 6.6 for example.

sequence

� -n = 7 -� 2× n = 14

trips

1 2 34 7 52 6 2 4 3 71 3 0

? ?

65

SWAP T

2 0 0 0

� -n = 7 -� 2× n = 14

1 2 34 7 52 6 2 4 3 71 3 065 2 0 0 0

Figure 6.6: Illustration of SWAP T operator for a trip

• EBSRT : A neighbor of STλ is created by extracting the visit in position j and re-
inserting this visit backward just before the visit in position i, leading to sequence
ST ′λ = STλ1, S

T
λ[j], S

T
λ[i], S

T
λ2, S

T
λ3. See Fig. 6.7 for example.

sequence

� -n = 7 -� 2× n = 14

trips

1 2 34 7 52 6 2 4 3 71 3 065

EBSRT

2 0 0 0

� -n = 7 -� 2× n = 14

1 2 34 7 51 6 2 4 371 3 065 3 0 0 0

?

Figure 6.7: Illustration of EBSRT operator for a trip

• EFSRT : A neighbor of STλ is created by extracting the visit in position i and re-
inserting it forward immediately after the visit in position j, leading to a sequence
ST

′
λ = STλ1, S

T
λ2, S

T
λ[j], S

T
λ[i], S

T
λ3. See Fig. 6.8 for example.

• InversionT : A neighbor of STλ is created by inserting STλ[i], S
T
λ2, S

T
λ[j] in the inverse

order between STλ1 and STλ3. So for example (see Fig. 6.9).

Neighborhood based on two trips

Given random trip in ST , denoted by λ and µ (µ = λ + 1, i ≤ kλ, kλ 6= 0, j ≤ kµ,
kµ 6= 0) trip in ST (corresponding to STλ and STµ ):

/kλ, S
T
λ /.../kµ, S

T
µ / = /kλ, S

T
λ1/S

T
λ[i]/S

T
λ2/.../kµ, S

T
µ1/S

T
µ[j]/S

T
µ2/ with:
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sequence

� -n = 7 -� 2× n = 14

trips

1 2 34 7 52 6 2 4 3 71 3 065

EFSRT

2 0 0 0

� -n = 7 -� 2× n = 14

1 2 34 7 51 6 2 43 71 3 065 3 0 0 0

?

Figure 6.8: Illustration of EFSRT operator for a trip

sequence

� -n = 7 -� 2× n = 14

trips

1 2 34 7 52 6 2 4 3 71 3 0

? ?

65

InversionT

2 0 0 0

� -n = 7 -� 2× n = 14

1 2 34 7 52 6 2 4371 3 065 2 0 0 0

Figure 6.9: Illustration of InversionT operator for a trip

• STλ1, STλ2 two subsequences of visits and STλ[i] the visit in position i in STλ sequence

(i ≤ kλ)

• STµ1, STµ2 two subsequences of visits and STµ[j] the visit in position j in STµ sequence

(j ≤ kµ).

We define the following neighborhood operators:

• SWAP T2 : A neighbor of kλ, S
T
λ //kµ, S

T
µ is created by interchanging the jobs in

position i and j, leading to sequence

/kλ, S
T ′
λ /.../kµ, S

T ′
µ / = /kλ, S

T
λ1/S

T
µ[j]/S

T
λ2/.../kµ, S

T
µ1/S

T
λ[i]/S

T
µ2/. See for example

Fig. 6.10.

• EBSRT2 : this operator is built with the same idea. The number of visits in trips
λ and µ have to be updated. A particular treatment has to be realized if a trip
becomes empty. See for example Fig. 6.11.

• EFSRT2 : this operator is built with the same idea. The number of visits in trips
λ and µ have to be updated. A particular treatment has to be realized if a trip
becomes empty. See for example Fig. 6.12.
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sequence

� -n = 7 -� 2× n = 14

trips

1 2 34 7 52 6 2 4 3 71 3 0

? ?

65

SWAP T2

2 0 0 0

� -n = 7 -� 2× n = 14

1 2 34 7 52 6 2 4 3 71 3 065 2 0 0 0

Figure 6.10: Illustration of SWAP T2 in the two-trip swap operator

sequence

� -n = 7 -� 2× n = 14

trips

1 2 34 7 52 6 2 4 3 71 3 065

EBSRT2

2 0 0 0

� -n = 7 -� 2× n = 14

1 2 34 7 516 2 4 3 71 3 065 3 0 0 0

?

Figure 6.11: Illustration of EBSRT2 in the two-trip EBSR operator

sequence

� -n = 7 -� 2× n = 14

trips

1 2 34 7 52 6 2 4 3 71 3 065

EFSRT2

2 0 0 0

� -n = 7 -� 2× n = 14

1 2 34 7 51 6 2 4 3 71 3 065 3 0 0 0

?

Figure 6.12: Illustration of EFSRT2 in two-trip EFSR operator

Moves and selection of the best neighbor

The aim of the problem is to minimize the total tardiness. The best neighbor in the
candidate item that is non-tabu and with the smallest total tardiness. For managing the
tabu list, we use the first-in-first-out (FIFO) strategy. Old attributes are deleted as new
attributes are inserted.
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Tabu list

We define three tabu lists and the size of the tabu lists is fixed. An element of the tabu
list is defined by (λ, µ, Ji, Jj), λ, µ are the indexes of two trips, Ji and Jj are two jobs:

• For a swap of two jobs Ji and Jj in the sequence, we insert in the Tabu list the
element (0, 0, Ji, Jj). For example, see Fig. 6.5, the element inserted in the Tabu
list is (0, 0, J5, J2). In this case λ = µ = 0.

• For a move in two trips λ and µ, we insert in the Tabu list the element (λ, µ, Ji, Jj)
where i and j are the positions that are concerned in trips λ and µ respectively. For
a move in a single trip, we have λ = µ. For example, see Fig. 6.6, where the tabu
list is (1, 1, J1, J5) and Fig. 6.12, where the tabu list is (1, 2, J1, J6).

Stopping condition

The algorithm is stopped when the time limit has been reached. This time limit is
denoted by TimeLimitTS = n(m/2)t ms [Vallada et al., 2008], where t = 90.

Detailed algorithm

The detailed TS algorithm is given in Algo. 15.

• FlagSwapo allow to make a selection of the neighbor operator of sequence.

• LimitSwapo allow to limit the size of the neighborhood in sequence.

• FlagOperaT allow to make a selection of the neighbor operators in sequence of a
trip (FlagOperaT ∈ {FlagSwapT , F lagEBSRT , F lagEFSRT , F lagInversionT }).

• LimitOperaT allow to limit the size of the neighborhood in a trip (LimitOperaT
∈ {LimitSwapT , LimitEBSRT , LimitEFSRT , LimitInversionT }).

• FlagOperaT2 allow to make a selection of the neighbor operators in sequence of two
different trips (FlagOperaT2 ∈ {FlagSwapT2 , F lagEBSRT2 , F lagEFSRT2 }).

• Del(T ) deletes the upper element of TS

• Add(T, (λ, µ, Ji, Jj)) adds element (T, (λ, µ, Ji, Jj)) to T (tabu list), ∀λ, µ ∈ {0, 1, 2, ...}.

In Algo. 15, the Test(SWAP o), Test(OperaT ), Test(OperaT2 ) are described in Algo.
16, 17, 18:

6.3 Computational experiments

We present in this section the generation of data, and we discuss the results.
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Algorithm 15 Tabu search algorithm for scheduling and vehicle routing

1: Initialization
2: S0 = initial solution, S = current solution
3: S′ = S0 // best solution of N(S)
4: S∗ = S0 // best solution of N(S) and non-tabu
5: f∗ = f(S0) // f∗ value of S∗ and f(S0) value of S0
6: T = ∅ // T is the tabu list
7: while (CPU ≤ TimeLimitTS ) do
8: f(S′) =∞,
9: //Selecting neighbor in sequence

10: for i = 0 to n− 1 do
11: for j = i+ 1 to n do
12: Test(SWAP o)
13: end for
14: end for
15: //Selecting neighbor of a trip
16: for λ = 0 to n− 1 do
17: for i = 0 to nbjoboftrip[λ]− 2 do
18: //nbjoboftrip[λ] is the number jobs of trip λ
19: for j = i+ 1 to nbjoboftrip[λ]− 1 do
20: Test(OperaT )
21: end for
22: end for
23: end for
24: //Selecting neighbor in two trips
25: for λ = 0 to n− 2 do
26: for µ = 0 to n− 1 do
27: for i = 0 to nbjoboftrip[λ]− 1 do
28: //nbjoboftrip[λ], nbjoboftrip[µ] are the number jobs of trip λ, µ
29: for j = 0 to nbjoboftrip[µ]− 1 do
30: Test(OperaT2 )
31: end for
32: end for
33: end for
34: end for
35: if (f(S′) < f∗) then S∗ = S′, f∗ = f(S), end if
36: if (SizeTabu ≥ TabuMax) then Del(T ) end if
37: Add(T, (λ, µ, i, j))
38: end while

Generation data

We have tested the algorithms on a PC Intel coreTM i5 CPU 2.4GHz. Data sets have
been randomly generated (notice that there is no benchmark instance for the m-machine
flowshop and vehicle routing problem integrated). The processing times pi,j have been
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Algorithm 16 Test(SWAP o)

1: if (FlagSwapo = 1) and (j − i ≤ LimitSwapo) then
2: S = S′, f(S) = f(S′), SWAP o(S, (0, 0, i, j)),
3: if ((0, 0, i, j) /∈ T ) then
4: Calculate(f(S)),
5: if (f(S) < f(S′)) then S′ = S, f(S′) = f(S), move = (0, 0, i, j), end if
6: end if
7: end if

Algorithm 17 Test(OpareT )

1: if (FlagOperaT = 1) and (j − i ≤ LimitOperaT ) then
2: S = S′, f(S) = f(S′), OperaT (S, (λ, λ, i, j)),
3: if ((λ, λ, i, j) /∈ T ) then
4: Calculate(f(S)),
5: if (f(S) < f(S′)) then S′ = S, f(S′) = f(S), move = (λ, λ, i, j), end if
6: end if
7: end if

Algorithm 18 Test(OpareT2 )

1: if (FlagOperaT2 = 1) then
2: S = S′, f(S) = f(S′), OperaT2 (S, (λ, µ, i, j)),
3: if ((λ, µ, i, j) /∈ T ) then
4: Calculate(f(S)),
5: if (f(S) < f(S′)) then S′ = S, f(S′) = f(S), move = (λ, µ, i, j)), end if
6: end if
7: end if

generated in [1,100], the due dates dj have been generated in [50, 50n], the position of
“custom” j is given by its coordinates (xj , yj) generated in [1, 70] (see Fig. 6.13). The
delivery time li,j is the classical euclidian distance:

li,j =
√

(xj − xi)2 + (yj − yi)2

Ten instances are used for each combination of n andm, with n ∈ {20, 30, 50, 70, 100, 150,
200} and m ∈ {2, 4}.

For the TS algorithm, some preliminary experiments have conducted to the following
parameters settings: TimeLimitTS = 10 seconds, Tabu list = {10, 20, 40, 80} elements.

Results

In Table 6.1, column ‘Best’ for TSX (X ∈ {10, 20, 40, 80}) indicates the number of times
this method strictly outperforms other method. Column ‘∆TSX ’ indicates the average
deviation between TSX and the best method between TS10, TS20, TS40 and TS80.
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“Custom”j

“Custom”i

li,j

yj

yi

xixj

Figure 6.13: Illustration of calculation of li,j

∆TSX =
TSX −min(TS10, TS20, TS40, TS80)

TSX

Table 6.1: Comparison of the Tabu search algorithms
TS10 TS20 TS40 TS80

n×m Best ∆TS10 Best ∆TS20 Best ∆TS40 Best ∆TS80

20 × 2 3 17,58% 7 2,16% 3 17,58% 0 24,81%
30 × 2 1 11,62% 7 13,34% 3 10,97% 0 30,19%
50 × 2 0 17,40% 1 21,81% 2 12,49% 7 3,23%
70 × 2 0 16,12% 0 21,88% 2 10,99% 8 2,50%
100 × 2 1 19,24% 1 25,61% 0 14,93% 8 0,65%
150 × 2 0 23,42% 0 15,27% 4 5,29% 6 5,95%
200 × 2 0 26,35% 5 3,60% 2 6,76% 3 7,19%
20 × 4 0 9,51% 10 0,00% 0 9,51% 0 12,04%
30 × 4 0 9,28% 10 0,00% 0 9,28% 0 17,63%
50 × 4 0 8,67% 5 3,19% 2 3,47% 1 4,60%
70 × 4 1 7,34% 2 9,54% 3 5,38% 5 4,47%
100 × 4 0 18,60% 3 9,84% 2 9,23% 5 4,75%
150 × 4 0 20,08% 2 2,84% 4 3,08% 4 4,10%
200 × 4 0 18,52% 3 2,60% 5 4,16% 2 10,73%

6 15,98% 56 9,41% 32 8,79% 49 9,49%

We can see that the TS20 (with tabu list is 20) leads to the best results with a number
of best solutions equal to 56. On average, the deviation between the solutions returned by
this method and the best solutions is 9,41%. This value is around and 15,98% for TS10,
8,79% for TS40 and 9,49% for TS80.

In Table 6.2, column ‘Best TS < EDD’ indicates the number of times the method TS
outperforms method EDD, column Cpu(s) indicates the average computation time of TS
per 10 instances. Column ‘∆’ indicates the average deviation between EDD and TS.

∆ =
EDD − TS

EDD
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Table 6.2: Comparison of the TS20 and EDD algorithm
n×m Best TS<EDD Cpu(s) ∆

20 × 2 10 10,00 72,0%
30 × 2 10 10,00 79,7%
50 × 2 10 10,00 88,3%
70 × 2 10 10,01 85,2%
100 × 2 10 10,01 91,4%
150 × 2 10 10,03 90,0%
200 × 2 10 10,06 81,3%
20 × 4 10 10,00 55,9%
30 × 4 10 10,00 69,2%
50 × 4 10 10,00 75,9%
70 × 4 10 10,01 71,4%
100 × 4 10 10,01 83,7%
150 × 4 10 10,03 77,7%
200 × 4 10 10,03 70,4%

As we can see in Table 6.2, TS improves significantly the initial solution given by
EDD, with 78,0% of improvement in average.

6.4 Conclusions of chapter 6

We approach a problem where a m-machine permutation flow shop scheduling problem
and a vehicle routing problem are integrated to minimize the total tardiness. To our
knowledge, this is the first time that this problem is approached in the literature. We
present a direct coding for a complete solution and a neighborhood method for finding a
sequence and trips. We propose a tabu search algorithm for this problem, the first results
show that the TS greatly improves the initial solution given by EDD and where each trip
serves only one job at a time.

In the future, the first research directions are about the evaluation of the method.
We will develop genetic algorithms and other methods in order to see the real quality
of the tabu search. Then, we will combine mathematical programming and local search
(matheuristic), in order to see if matheuristic are performing methods for this problem.

The work described in this chapter has been supported by the ANR project called
“ATHENA”.
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Conclusion

In this thesis, we consider a permutation flow shop scheduling problem of m ma-
chines where the objective function is to minimize the total tardiness. We propose exact
methods, classical heuristic algorithms and matheuristic algorithms for this problem. The
matheuristic methods are a new type of approximated algorithms that have been proposed
for solving efficiently some combinatorial optimization problems. These methods embed
exact resolution into (meta)heuristic approaches. This type of resolution method has re-
ceived a great interest because of their very good performances for solving some difficult
problems.

Beginning with Chapter 1, we introduce the basic concepts and components of a
scheduling problem and the aspects related to these components. We give a brief in-
troduction to the theory of scheduling and present an overview of the resolution methods.
We provide the description of the state-of-the-art methods for the problem in Chapter 2.
The exact methods and (meta)heuristic approaches are presented in the literature review
concerning the flow shop scheduling problem with the minimization of the total tardi-
ness. The matheuristic method of Della Croce [Della Croce et al., 2011] is provided for
the F2||

∑
Cj problem. In Chapter 3, we propose and describe mixed integer linear pro-

gramming formulations and branch-and-bound algorithms for the problem. Dominance
conditions are used to prune nodes. We have evaluated the methods with a random data
set with small to medium instances for the two-machine case. We have also developed a
new hybrid lower bound algorithm for improving the lower bounds. The new lower bound
is based on a partial relaxation of the integrity of variables of the MILP model. This lower
bound has good performances for small instances, but is not usable for large instances,
due to the size of the MILP and to the number of binary variables introduced. Many ap-
proximate algorithms (NEH, EDD, a Beam Search, a Recovering Beam Search, a Genetic
algorithm and a Tabu Search algorithm) have been proposed for solving the problem in
Chapter 4. Many neighborhood operators have also applied for the methods. We have
coded and evaluated the algorithms in order to test their performance with benchmark
instances. From the heuristics and metaheuristics algorithms we can conclude that:

• The algorithms that are initiated by EDD heuristic are always better than the algo-
rithms initiated by EN, NEH or E&N .

• We can also say that algorithms (BS, RBS, GA and TS) perform very well with EDD
as an initial heuristic.

• From the methods tested, the Tabu Search algorithm that is proposed outperforms
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all the other methods evaluated. We also show that the genetic algorithm is a good
metaheuristic for the problem.

We have proposed new matheuristic algorithms for solving the problem in Chapter 5. The
matheuristics are based on the insertion of exact partial solutions into a neighborhood
search algorithm. Several versions of these algorithms have been derived, depending on
how the initial sequence is obtained and which subproblem is optimized. In these methods,
the solver for the MILP model is called iteratively. These methods allow to improve the
initial solution. With the same initial solution, the best matheuristic method performs
better than the best genetic algorithm, but the performance is less evident in comparison
with the best Tabu Search algorithm. In Chapter 6, we have considered a problem where
a m-machine permutation flow shop scheduling problem and a vehicle routing problem
are integrated to minimize the total tardiness. We have presented a direct coding for a
complete solution and a neighborhood method for finding a sequence and trips. We have
proposed a tabu search algorithm for this problem, the results have showed that the TS
greatly improves the initial solution given by EDD heuristic and where each trip serves
only one job at a time.

Several directions can be considered for a future research:

• to embed the resolution of the MILP into the genetic algorithm or into another
metaheuristic, as a new neighborhood structure.

• to find other crossover and mutation operators, for improving the genetic algorithm.

• a branch-and-bound algorithm could be used in the mutation operator.

• to embed the resolution of the MILP into the Tabu search or into another meta-
heuristic as a new neighborhood operator.

• to propose a simulated annealing algorithm to be compared to the matheuristic
algorithms for m-machine permutation flow shop scheduling problem.

• to test the matheuristics with initial solution by another method than the same
GAEDD1

• For the integrated problem described in Chap. 6, we will develop genetic algorithms
and other methods, in order to see the real quality of the tabu search. Then, we will
combine mathematical programming and local search (matheuristic), in order to see
if matheuristic are performing methods.

• Finally, we will develop all the matheuristic algorithms proposed in Chapter 5 for
the integrated flow shop scheduling and vehicle routing problems.
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Appendix A

The detailed example of all the
phases of DP algorithm

Let consider the same instance as before. We have the first phase (see Table A.1) with
one job. The tables to be done for e1 = {J1}, e1 = {J2}, e1 = {J3}, e1 = {J4}.

Table A.1: The first phase of an example with one job

e1 {J1} {J2} {J3} {J4}
Jj J1 J2 J3 J4
ip1,j 4 2 1 3

t Cj(t) t′ F1 Cj(t) t′ F1 Cj(t) t′ F1 Cj(t) t′ F1

0 6 2 6 7 5 7 6 5 6 6 3 6
1 6 2 6 7 5 7 6 5 6 6 3 6
2 6 2 6 7 5 7 7 6 7 6 3 6
3 6 2 6 8 6 8 8 7 8 6 3 6
4 6 2 6 9 7 9 9 8 9 7 4 7
5 7 3 7 10 8 10 10 9 10 8 5 8
6 8 4 8 11 9 11 11 10 11 9 6 9
7 9 5 9 12 10 12 12 11 12 10 7 10
8 10 6 10 13 11 13 13 12 13 11 8 11
9 11 7 11 14 12 14 14 13 14 12 9 12
...

...
...

...
...

...
...

...
...

...
...

...
...

Then the second phase where two jobs are scheduled. The value of f2(e2, t) is indicated
by a star (see Table .A.2, A.3). Similar tables have to be done for e2 = {J1, J3}, e2 =
{J1, J4}, e2 = {J2, J3}, e2 = {J2, J4} and e2 = {J3, J4}. The tables have to be completed
with Jj = J1, Jj = J2, Jj = J3, Jj = J4.
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Table A.2: The second phase of an example with two jobs (1)

e2 {J1, J2} {J1, J3}
Jj J1 J2 J1 J3
ip1,j 8 4 8 2

t Cj(t) t′ F1 F2 Cj(t) t′ F1 F2 Cj(t) t′ F1 F2 Cj(t) t′ F1 F2

0 6 2 7 17 7 5 7 16∗ 6 2 7 17 6 5 7 14∗

1 6 2 7 17 7 5 7 16∗ 6 2 7 17 6 5 7 14∗

2 6 2 7 17 7 5 7 16∗ 6 2 7 17 7 6 8 16∗

3 6 2 7 17∗ 8 6 8 18 6 2 7 17∗ 8 7 9 18
4 6 2 7 17∗ 9 7 9 20 2 2 7 17∗ 9 8 10 20
5 7 3 8 19∗ 10 8 10 22 7 3 8 19∗ 10 9 11 22
6 8 4 9 21∗ 11 9 11 24 8 4 9 21∗ 11 10 12 24
7 9 5 10 23∗ 12 10 12 26 9 5 10 23∗ 12 11 13 26
8 10 6 11 25∗ 13 11 13 28 10 6 11 25∗ 13 12 14 28
9 11 7 12 27∗ 14 12 14 30 11 7 12 27 14 13 15 30
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

e2 {J1, J4} {J2, J3}
Jj J1 J4 J2 J3
ip1,j 8 6 4 2

t Cj(t) t′ F1 F2 Cj(t) t′ F1 F2 Cj(t) t′ F1 F2 Cj(t) t′ F1 F2

0 6 2 6 16 6 3 6 15∗ 7 5 10 19 6 5 10 17∗

1 6 2 6 16 6 3 6 15∗ 7 5 10 19 6 5 10 17∗

2 6 2 6 16 6 3 6 15∗ 7 5 10 19∗ 7 6 11 19∗

3 6 2 6 16 6 3 6 15∗ 8 6 11 21∗ 8 7 12 21∗

4 6 2 6 16∗ 7 4 6 16∗ 9 7 12 23∗ 9 8 13 23∗

5 7 3 6 17∗ 8 5 7 18 10 8 13 25∗ 10 9 14 25∗

6 8 4 7 19∗ 9 6 8 20∗ 11 9 14 27∗ 11 10 15 27∗

7 9 5 8 21∗ 10 7 9 22 12 10 15 29∗ 12 11 16 29∗

8 10 6 9 23∗ 11 8 10 24 13 11 16 31∗ 13 12 17 31∗

9 11 7 10 25∗ 12 9 11 26 14 12 17 33∗ 14 13 18 33∗

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
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Table A.3: The second phase of an example with two jobs (2)

e2 {J2, J4} {J3, J4}
Jj J2 J4 J3 J4
ip1,j
t Cj(t) t′ F1 F2 Cj(t) t′ F1 F2 Cj(t) t′ F1 F2 Cj(t) t′ F1 F2

0 7 5 8 17∗ 6 3 8 17∗ 6 5 8 15∗ 6 3 8 17
1 7 5 8 17∗ 6 3 8 17∗ 6 5 8 15∗ 6 3 8 17
2 7 5 8 17∗ 6 3 8 17∗ 7 6 9 17∗ 7 3 8 17∗

3 8 6 9 19 6 3 8 17∗ 8 7 10 19 6 3 8 17∗

4 9 7 10 21 7 4 9 19∗ 9 8 11 21 7 4 9 19∗

5 10 8 11 23 8 5 10 21∗ 10 9 12 23 8 5 10 21∗

6 11 9 12 25 9 6 11 23∗ 11 10 13 25 9 6 11 23∗

7 12 10 13 27 10 7 12 25∗ 12 11 14 27 10 7 12 25∗

8 13 11 14 29 11 8 13 27∗ 13 12 15 29 11 8 13 27∗

9 14 12 15 31 12 9 14 29∗ 14 13 16 31 12 9 14 29∗

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
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THE DETAIL EXAMPLE OF ALL THE PHASES OF DP ALGORITHM

The third phase with e3 = {J1, J2, J3} (see Table .A.4), this table has to be completed
with Jj = J1, Jj = J2 and Jj = J3 is the following.

Table A.4: The third phase of an example with third jobs (1)

e3 {J1, J2, J3}
Jj J1 J2 J3
ip1,j 12 6 3

t Cj(t) t′ F2 F3 Cj(t) t′ F2 F3 Cj(t) t′ F2 F3

0 6 2 19 33 7 5 19 30 6 5 19 27∗

1 6 2 19 33 7 5 19 30 6 5 19 27∗

2 6 2 19 33 7 5 19 30∗ 7 6 21 30∗

3 6 2 19 33∗ 8 6 21 33∗ 8 7 23 33∗

4 6 2 19 33∗ 9 7 23 36 9 8 25 36
5 7 3 21 36∗ 10 8 25 39 10 9 27 39
6 8 4 23 39∗ 11 9 27 42 11 10 29 42
7 9 5 25 42∗ 12 10 29 44 12 11 31 45
8 10 6 27 45∗ 13 11 31 46 13 12 33 48
9 11 7 29 48∗ 14 12 33 48 14 13 35 51
...

...
...

...
...

...
...

...
...

...
...

...
...

The similar tables have to be done for e3 = {J1, J2, J4}, e3 = {J1, J3, J4} and e3 =
{J2, J3, J4} (see Table .A.5, A.6, A.7).

Table A.5: The third phase of an example with third jobs (2)

e3 {J1, J2, J4}
Jj J1 J2 J4
ip1,j 12 6 9

t Cj(t) t′ F2 F3 Cj(t) t′ F2 F3 Cj(t) t′ F2 F3

0 6 2 17 31 7 5 17 28∗ 6 3 17 29
1 6 2 17 31 7 5 17 28∗ 6 3 17 29
2 6 2 17 31 7 5 17 28 6 3 17 29
3 6 2 17 31 8 6 19 31 6 3 17 29∗

4 6 2 17 31 9 7 21 34 7 4 17 30∗

5 7 3 17 34∗ 10 8 23 37 8 5 19 33
6 8 4 19 35∗ 11 9 25 40 9 6 21 36
7 9 5 21 38∗ 12 10 27 43 10 7 23 39
8 10 6 23 41∗ 13 11 29 46 11 8 25 42
9 11 7 25 44∗ 14 12 31 49 12 9 27 45
...

...
...

...
...

...
...

...
...

...
...

...
...
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Table A.6: The third phase of an example with third jobs (3)

e3 {J1, J3, J4}
Jj J1 J3 J4
ip1,j 12 3 9

t Cj(t) t′ F2 F3 Cj(t) t′ F2 F3 Cj(t) t′ F2 F3

0 6 2 17 31 6 5 17 25∗ 6 3 17 29
1 6 2 17 31 6 5 17 25∗ 6 3 17 29
2 6 2 17 31 7 6 19 28∗ 6 3 17 29
3 6 2 17 31 8 7 21 31 6 3 17 29∗

4 6 2 17 31 9 8 23 34 7 4 17 30∗

5 7 3 17 32∗ 10 9 25 37 8 5 19 33
6 8 4 19 34∗ 11 10 27 40 9 6 21 36
7 9 5 21 37∗ 12 11 29 43 10 7 23 39
8 10 6 23 40∗ 13 12 31 46 11 8 25 42
9 11 7 25 43∗ 14 13 33 49 12 9 27 45
...

...
...

...
...

...
...

...
...

...
...

...
...

Table A.7: The third phase of an example with third jobs (4)

e3 {J2, J3, J4}
Jj J2 J3 J4
ip1,j 12 6 3

t Cj(t) t′ F2 F3 Cj(t) t′ F2 F3 Cj(t) t′ F2 F3

0 7 2 17 25∗ 6 5 21 29 6 3 21 33
1 7 2 17 25∗ 6 5 21 29 6 3 21 33
2 7 2 17 25∗ 7 6 23 32 6 3 21 33
3 8 3 17 26∗ 8 7 25 35 6 3 21 33
4 9 4 19 29∗ 9 8 27 37 7 4 23 36
5 10 5 21 32∗ 10 9 29 40 8 5 25 39
6 11 6 23 35∗ 11 10 31 43 9 6 27 42
7 12 7 25 38∗ 12 11 33 46 10 7 29 45
8 13 8 27 41∗ 13 12 35 49 11 8 31 48
9 14 9 29 44∗ 14 13 37 52 12 9 33 51
...

...
...

...
...

...
...

...
...

...
...

...
...

At the end, we have the fourth phase with e4 = {J1, J2, J3, J4} (see Table. A.8) and
only one possible value for t = 0.

We deduce from this table that the value of the optimal solution is equal to 41. By
applying a backtrack algorithm, we found the the optimal solution is {J3, J1, J4, J2}.

125



THE DETAIL EXAMPLE OF ALL THE PHASES OF DP ALGORITHM

Table A.8: The final phase of an example with four jobs

e4 {J1, J2, J3, J4}
Jj J1 J2 J3 J4
ip1,j 16 8 4 12

t Cj(t) t′ F3 F4 Cj(t) t′ F3 F4 Cj(t) t′ F3 F4 Cj(t) t′ F3 F4

0 6 2 25 43 7 5 32 45 6 5 32 41∗ 6 33 33 48
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Appendix B

The results of GA

The time limit of the GA is fixed to TimeLimGA = (n(m/2)× 90)/1000 seconds.

Initial population

The initial population P0 individuals is generated by the ways: In GA3 (case 3), two
individual is given by EDD and NEH, two individual is given by EBSREDD (individual
is created by EBSR method that uses EDD rule as input) and EBSRNEH , and others
are randomly generated. In GA4 (case 4), two individual is given by EDD and NEH,
5% ∗ PopSize individual is given by EBSREDD and 5% ∗ PopSize individual is given by
EBSRNEH , and others are randomly generated. In GA5 (case 5), two individual is given
by EDD and NEH, 10% ∗ PopSize individual is given by EBSREDD and 10% ∗ PopSize
individual is given by EBSRNEH , and others are randomly generated. These GA3, GA4,
GA5 are compared to GA1(EDD).

case3 case4 case5

PopSize = |Pk| 150 250 150
CrossSize = |Ck| 200 300 600
MutSize = |Mk| 100 200 360

The several GA methods are compared in terms of quality. In Tables B.1, column ‘Best’
for ‘GAν ’ (ν ∈ {1, 3, 4, 5}) indicates the number of times the method GAν outperforms the
other methods, column Cpu(s) indicates the average computation time of GAν per nine
instances, column ‘∆ν ’ indicates the average deviation between GAν and the best method
between GA1(EDD), GA3, GA4 and GA5.

∆ν =
GAν −min(GA1(EDD), GA3, GA4, GA5)

GAν

We can see in Table B.1, the genetic algorithm GA1(EDD) leads to the best results.
The deviation between the solutions returned by this method and the best solutions is
2,63%. This value is around 5,14% for GA3, 5,74% for GA4 and 3,93% for GA5.
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Table B.1: Comparison of genetic algorithms of difference case

GA1(EDD) GA3 GA4 GA5

n×m Best Cpu(s) ∆1 Best Cpu(s) ∆3 Best Cpu(s) ∆4 Best Cpu(s) ∆5

50 × 10 7 22,00 0,77% 3 22,01 3,44% 2 22,00 2,14% 3 22,00 1,14%
50 × 30 4 67,01 2,32% 1 67,01 3,51% 3 67,01 1,81% 1 67,00 1,56%
50 × 50 5 112,01 1,09% 1 112,01 2,13% 2 112,02 1,57% 1 112,01 2,85%
150 × 10 5 67,02 3,95% 5 67,02 4,56% 3 67,02 6,28% 2 67,02 4,93%
150 × 30 5 202,04 4,69% 2 202,01 8,41% 3 202,02 3,46% 2 202,02 1,25%
150 × 50 1 337,05 9,36% 3 337,04 3,06% 3 337,04 4,47% 2 337,03 6,23%
250 × 10 5 112,03 1,60% 6 112,04 0,87% 3 112,04 2,32% 4 112,03 1,40%
250 × 30 5 337,05 1,45% 4 337,05 5,01% 1 337,04 15,69% 3 337,05 12,66%
250 × 50 4 562,08 1,20% 4 562,06 1,98% 2 562,08 2,30% 2 562,06 1,94%
350 × 10 5 157,09 1,25% 2 157,08 8,32% 2 157,07 8,42% 6 157,06 10,65%
350 × 30 5 472,13 1,83% 2 472,07 15,72% 2 472,11 15,47% 4 472,08 1,54%
50 × 50 3 787,09 2,03% 2 787,13 4,71% 2 787,12 4,89% 5 787,09 0,99%

54 269,55 2,63% 35 269,54 5,14% 28 269,55 5,74% 35 269,54 3,93%
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Appendix C

The results of Tabu search
algorithms

The for TS methods (with four tabu lists parameter and initiated solution by EDD
rule) are compared in terms of quality. In Table C.1, column ‘Best’ for ‘TS`(EDD)’ (with
` is a number element of Tabu list) indicates the number of times the method TS`(EDD)
outperforms the other methods, column Cpu(s) indicates the average computation time of
TS`(EDD) per nine instances, column ‘∆`(EDD)’ (` ∈ {20, 40, 120}) indicates the average
deviation between TS`(EDD) and the best method between TS20(EDD), TS40(EDD),
TS60(EDD) and TS120(EDD).

∆`(EDD) =
TS`(EDD)−min(TS20(EDD), TS40(EDD), TS60(EDD), TS120(EDD))

TS`(EDD)

In Table C.1, we can see that the TS40(EDD) leads to the best results. On average,
the deviation between the solutions returned by this method and the best solutions is
1,26%. These values are around 2,75% for TS20(EDD), 2,88% for TS60(EDD) and 1,87%
for TS120(EDD).

In Table C.2, the TS methods are initiated solution by EN rule. Column ‘Best’ for
‘TS`(EN)’ (with ` is a number element of Tabu list) indicates the number of times the
method TS`(EN) outperforms the other methods, column Cpu(s) indicates the average
computation time of TS`(EN) per nine instances, column ‘∆`(EN)’ (` ∈ {20, 40, 120}) in-
dicates the average deviation between TS`(EN) and the best method between TS20(EN),
TS40(EN), TS60(EN) and TS120(EN).

∆`(EN) =
TS`(EN)−min(TS20(EN), TS40(EN), TS60(EN), TS120(EN))

TS`(EN)

As we can see that the TS40(EN) leads to the best results. On average, the deviation
between the solutions returned by this method and the best solutions is 0,73%. These
values are around 2,86% for TS20(EN), 2,56% for TS60(EN) and 2,33% for TS120(EN).
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In Table C.3, the TS methods are initiated solution by NEH rule. Column ‘Best’ for
‘TS`(NEH)’ indicates the number of times the method TS`(NEH) outperforms the other
methods, column Cpu(s) indicates the average computation time of TS`(NEH) per nine
instances, column ‘∆`(NEH)’ (` ∈ {20, 40, 120}) indicates the average deviation between
TS`(NEH) and the best method between TS20(NEH), TS40(NEH), TS60(NEH) and
TS120(NEH).

∆`(NEH) =
TS`(NEH)−min(TS20(NEH), TS40(NEH), TS60(NEH), TS120(NEH))

TS`(NEH)

We can see that the TS40(NEH) leads to the best results (number of the best solution
=54). On average, the deviation between the solutions returned by this method and
the best solutions is 2,17%. These values are around 2,35% for TS20(NEH), 0,58% for
TS60(NEH) and 1,12% for TS120(NEH).
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Table C.1: Comparison of tabu search algorithms are initiated by EDD solution
TS20(EDD) TS40(EDD) TS60(EDD) TS120(EDD)

n×m Best Cpu(s) ∆20(EDD) Best Cpu(s) ∆40(EDD) Best Cpu(s) ∆60(EDD) Best Cpu(s) ∆120(EDD)

50 × 10 3 22,02 1,96% 7 22,01 0,12% 3 22,01 1,57% 2 22,02 2,13%
50 × 30 1 67,03 1,30% 6 67,02 0,28% 2 67,04 1,49% 0 67,04 2,56%
50 × 50 0 112,07 1,57% 7 112,04 0,26% 1 112,06 1,22% 1 112,05 1,28%
150 × 10 3 67,28 4,55% 4 67,18 2,23% 4 67,18 0,54% 4 67,27 1,49%
150 × 30 3 202,89 1,58% 5 202,28 2,11% 1 202,89 6,96% 3 202,57 5,91%
150 × 50 2 338,62 8,36% 5 337,78 0,24% 1 338,04 7,91% 1 338,22 6,05%
250 × 10 4 113,21 0,58% 7 112,67 0,19% 3 113,50 0,79% 4 113,53 0,59%
250 × 30 2 341,34 1,41% 8 338,47 0,15% 2 340,95 0,89% 3 339,74 0,43%
250 × 50 1 568,16 1,30% 9 565,79 0,00% 1 567,71 0,80% 2 566,53 0,63%
350 × 10 3 160,81 0,83% 9 159,35 0,00% 3 159,79 1,54% 4 159,74 0,74%
350 × 30 1 480,60 9,09% 8 476,19 9,56% 2 478,17 10,29% 4 475,83 0,37%
350 × 50 2 801,11 0,47% 8 793,20 0,01% 1 798,64 0,55% 4 799,11 0,28%

25 272,93 2,75% 83 271,17 1,26% 24 272,33 2,88% 32 271,97 1,87%
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Table C.2: Comparison of tabu search algorithms are initiated by EN solution
TS20(EN) TS40(EN) TS60(EN) TS120(EN)

n×m Best Cpu(s) ∆20(EN) Best Cpu(s) ∆40(EN) Best Cpu(s) ∆60(EN) Best Cpu(s) ∆120(EN)

50 × 10 4 22,02 0,63% 4 22,01 0,33% 4 22,01 1,00% 3 22,00 0,49%
50 × 30 5 67,06 0,52% 1 67,02 1,30% 1 67,02 1,09% 2 67,03 1,42%
50 × 50 1 112,04 0,50% 2 112,03 0,49% 3 112,04 0,66% 3 112,06 0,70%
150 × 10 2 67,38 5,15% 5 67,19 0,29% 3 67,30 1,43% 5 67,20 1,42%
150 × 30 3 202,97 1,48% 5 202,30 5,12% 2 202,57 6,00% 2 202,62 4,12%
150 × 50 1 338,06 8,80% 3 337,51 0,65% 2 337,71 4,41% 3 338,18 5,93%
250 × 10 3 113,63 0,67% 5 112,89 0,08% 3 113,50 0,70% 7 112,74 0,13%
250 × 30 3 339,52 1,04% 5 338,11 0,11% 2 339,60 0,79% 5 339,38 0,37%
250 × 50 2 564,78 1,52% 6 564,31 0,12% 2 566,71 0,93% 2 566,30 0,77%
350 × 10 4 388,03 1,20% 8 158,26 0,14% 3 159,56 1,59% 7 158,28 0,15%
350 × 30 1 478,83 12,24% 9 476,06 0,00% 1 478,11 11,69% 1 478,27 11,72%
350 × 50 2 802,21 0,55% 8 795,12 0,11% 1 799,13 0,48% 1 901,60 0,75%

31 291,38 2,86% 61 271,07 0,73% 27 272,11 2,56% 41 280,47 2,33%
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Table C.3: Comparison of tabu search algorithms are initiated by NEH solution
TS20(NEH) TS40(NEH) TS60(NEH) TS120(NEH)

n×m Best Cpu(s) ∆20(NEH) Best Cpu(s) ∆40(NEH) Best Cpu(s) ∆60(NEH) Best Cpu(s) ∆120(NEH)

50 × 10 4 22,01 0,54% 5 22,01 0,35% 3 22,01 0,98% 3 22,01 0,58%
50 × 30 0 67,06 1,33% 7 67,03 0,19% 1 67,02 0,86% 1 67,01 1,47%
50 × 50 1 112,05 0,86% 3 112,02 0,61% 3 112,04 0,61% 2 112,03 0,69%
150 × 10 2 67,22 5,00% 4 67,15 4,31% 4 67,21 1,57% 5 67,12 0,57%
150 × 30 2 202,74 6,73% 2 202,90 7,47% 5 202,66 0,64% 3 202,50 2,32%
150 × 50 2 337,72 9,40% 2 412,21 10,34% 4 337,81 0,60% 1 337,56 6,16%
250 × 10 4 113,10 0,33% 6 112,62 0,47% 4 112,76 0,19% 4 112,81 0,07%
250 × 30 2 339,10 0,60% 3 338,63 0,62% 6 338,27 0,17% 4 339,06 0,45%
250 × 50 1 565,65 1,43% 5 564,99 0,58% 2 564,84 0,96% 4 564,21 0,78%
350 × 10 6 159,08 0,46% 5 159,41 0,28% 8 158,97 0,06% 7 158,74 0,03%
350 × 30 2 479,52 0,36% 6 475,51 0,19% 4 475,70 0,05% 4 474,68 0,08%
350 × 50 1 799,20 1,12% 6 795,23 0,65% 3 791,45 0,28% 3 794,40 0,24%

27 272,04 2,35% 54 277,48 2,17% 47 270,89 0,58% 41 271,01 1,12%
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ROADEF.

139



BIBLIOGRAPHIE

[Ta et al., 2013d] Ta, Q. C., Gen, W., Billaut, J. C., and Bouquard, J. L. (2013d). Reso-
lution of the f2||

∑
tj scheduling problem by genetic algorithm and matheuristic. pages

408–412. Proceedings of 2013 International Conference on Industrial Engineering and
Systems Management (IESM).

[Taillard, 1990] Taillard, E. (1990). Some efficient heuristic methods for the flow shop
sequencing problem. European Journal of Operational Research, 47:65–74.

[Taillard, 1993] Taillard, E. (1993). Benchmarks for basic scheduling problems. European
Journal of Operational Research, 64:278–285.

[Talbi, 2013] Talbi, E. G. (2013). Hybrid Metaheuristics. Studies in computational intel-
ligence, Springer.

[T’kindt and Billaut, 2006] T’kindt, V. and Billaut, J. C. (2006). Multicriteria Scheduling:
Theory, Models and Algorithms. 2nd ed. Springer Berlin Heidelberg New York.

[T’kindt et al., 2003] T’kindt, V., Gupta, J. N. D., and Billaut, J. C. (2003). Two-machine
flowshop scheduling with a secondary criterion. Computers and Operations Research,
30:505–526.

[Vallada and Ruiz, 2010] Vallada, E. and Ruiz, R. (2010). Genetic algorithms with path
relinking for the minimum tardiness permutation flowshop problem. European Journal
of Operational Research, 38:57–67.

[Vallada et al., 2008] Vallada, E., Ruiz, R., and Minella, G. (2008). Minimising total
tardiness in the m-machine flowshop problem: A review and evaluation of heuristics
and metaheuristics. Computers & Operations Research, 35:1350–1373.

[Vop et al., 1999] Vop, S., Martello, S., Osman, I. H., and Roucairol, C. (1999). Meta-
Heuristics: Advances and Trends in Local Search Paradigms for Optimization. Kluwer,
Boston.

[Wagner, 1959] Wagner, R. (1959). An integer linear-programming model for machine
scheduling. Naval Research Logistics Quarterly, 6(2):131–140.

[Wu et al., 2007] Wu, C. C., Lee, W. C., and Chen, T. (2007). Heuristic algorithms for
solving the maximum lateness scheduling problem with learning considerations. Com-
puters & Industrial Engineering, 52:124–132.

[Zegordi et al., 1995] Zegordi, S. H., Itoh, K., and Enkawa, T. (1995). Minimising
makespan for flow-shop scheduling by combining simulated annealing with sequencing
knowledge. European Journal of Operational Research, 85:515–531.

140


